1. Mannen H, Kohno M, Nagata Y, et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol Phylogenet Evol 2004;32:539–44.
4. Irshad A, Kandeepan G, Kumar S, et al. Factors influencing carcass composition of livestock: A review. J Anim Prod Adv 2013;3:177–186.
5. Wythes J, Shorthose W, Dodt R, Dickinson R. Carcass and meat quality of
Bos indicus×
Bos taurus and
Bos taurus cattle in northern Australia. Aust J Exp Agric 1989;29:757–63.
6. Zhang H, Wang Z, Wang S, Li H. Progress of genome wide association study in domestic animals. J Anm Sci Biotechnol 2012;3:26.
12. Lee SH, van der Werf J, Lee SH, et al. Genome wide QTL mapping to identify candidate genes for carcass traits in Hanwoo (Korean Cattle). Genes Genom 2012;34:43–9.
14. Takasuga A, Watanabe T, Mizoguchi Y, et al. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm Genome 2007;18:125–36.
15. Sorbolini S, Bongiorni S, Cellesi M, et al. Genome wide association study on beef production traits in Marchigiana cattle breed. J Anim Breed Genet 2017;134:43–8.
21. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225–9.
22. Fortes MR, Reverter A, Nagaraj SH, et al. A single nucleotide polymorphism-derived regulatory gene network underlying puberty in 2 tropical breeds of beef cattle. J Anm Sci 2011;89:1669–83.
24. Kim Y, Ryu J, Woo J, et al. Genome-wide association study reveals five nucleotide sequence variants for carcass traits in beef cattle. Anim Genet 2011;42:361–5.
26. Espigolan R, Baldi F, Boligon AA, et al. Associations between single nucleotide polymorphisms and carcass traits in Nellore cattle using high-density panels. Genet Mol Res 2015;14:11133– 44.
29. McClure MC, Morsci NS, Schnabel RD, et al. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim Genet 2010;41:597–607.
30. Ikenouchi J, Umeda M. FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci USA 2010;107:748–53.
31. Kim JJ, Farnir F, Savell J, Taylor JF. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between
Bos taurus (Angus) and
Bos indicus (Brahman) cattle. J Anim Sci 2003;8:1933–42.
34. Casas E, Shackelford SD, Keele JW, et al. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J Anim Sci 2000;78:560–9.
35. Kneeland J, Li C, Basarab J, Snelling W, et al. Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosomes 2, 6, 14, 19, 21, and 23 within one commercial line of
Bos taurus
. J Anim Sci 2004;82:3405–14.
36. Kim JW, Park SI, Yeo JS. Linkage mapping and QTL on chromosome 6 in Hanwoo (Korean cattle). Asian-Australas J Anim Sci 2003;16:1402–5.
37. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet 2001;29:229–32.
41. Laumet G, Petitprez V, Sillaire A, et al. A study of the association between the ADAM12 and SH3PXD2A (SH3MD1) genes and Alzheimer's disease. Neurosci Lett 2010;468:1–2.
42. Olson EN. MyoD family: a paradigm for development? Genes Dev 1990;4:1454–61.
43. Weintraub H, Davis R, Tapscott S, et al. The
MyoD gene family: Nodal point during specification of the muscle cell lineage. Science 1991;251:761–6.
45. Cieslak D, Kuryl J, Kapelanski W, et al. Relationship between genotypes at at MYOG, MYF3 and MYF5 loci and carcass meat and fat deposition traits in pigs. Animal Science Papers and Reports (Poland) 2002.
46. Brunelli S, Relaix F, Baesso S, Buckingham M, Cossu G. Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Dev Biol 2007;304:604–14.
47. Te Pas M, Harders F, Soumillion A, et al. Genetic variation at the porcine
MYF-5 gene locus. Lack of association with meat production traits. Mamm Genome 1999;10:123–7.