1. Hocquette JF, Gondret F, Baéza E, et al. IMF in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 2010;4:303–19.
2. Fernandez X, Monin G, Talmant A, et al. Influence of intramuscular fat content on the quality of pig meat—1. Composition of the lipid fraction and sensory characteristics of
m. longissimus lumborum
. Meat Sci 1999;53:59–65.
3. Chen JN, Jiang YZ, Cen WM, et al. Distribution of
H-FABP and
ACSL4 gene polymorphisms and their associations with IMF and backfat thickness in different pig populations. Genet Mol Res 2014;13:6759–72.
4. Wang X, Xue C, Wang X, et al. Differential display of expressed genes reveals a novel function of SFRS18 in regulation of intramuscular fat deposition. Int J Biol Sci 2009;5:28–33.
6. Paszek AA, Wilkie PJ, Flickinger GH, et al. Interval mapping of carcass and meat quality traits in a divergent swine cross. Anim Biotechnol 2009;12:155–65.
7. Ovilo C, Pérez-Enciso M, Barragán C, et al. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm Genome 2000;11:344–6.
10. Suzuki K, Irie M, Kadowaki H, et al. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and IMF. J Anim Sci 2005;83:2058–65.
11. Larzul C, Lefaucheur L, Ecolan P, et al. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J Anim Sci 1997;75:3126–37.
13. Newcom DW, Baas TJ, Schwab CR, et al. Relationship between Backfat depth and its individual layers and intramuscular fat percentage in swine [Internet]. c2004. [cited 2017 Mar 10]Animal Industry Report. Available from:
http://lib.dr.iastate.edu/ans_air/vol650/iss1/103
14. Pearson G, Robinson F, Gibson TB, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001;22:153–83.
15. Sakaue H, Ogawa W, Nakamura T, et al. Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 2004;279:39951–7.
16. Aouadi M, Jager J, Laurent K, et al. p38MAP Kinase activity is required for human primary adipocyte differentiation. FEBS Lett 2007;581:5591–6.
18. Tseng Y, Tong-Chuan H. Bone morphogenetic proteins and adipocyte differentiation. Cellscience Rev 2007;3:342–60.
19. Bachner D, Ahrens M, Schroder D, et al. Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T1/2). Dev Dyn 1998;213:398–411.
20. Wang EA, Israel DI, Kelly S, et al. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors 1993;9:57–71.
21. Nakae J, Kitamura T, Kitamura Y, et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 2003;4:119–29.
25. Ukkola O, Rankinen T, Lakka T, et al. Protein tyrosine phosphatase 1B variant associated with fat distribution and insulin metabolism. Obes Res 2005;13:829–34.
26. Griffiths , Anthony JF. An introduction to genetic analysis. New York, America: Macmillan; 2005.
27. Visscher PM, Hill WG, Wray NR. Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 2008;9:255–66.
28. Falconer DS. Introduction to quantitative genetics. New York, America: Pearson Education India; 1975.
29. Daszkiewicz T, Bąk T, Denaburski J. Quality of pork with a different intramuscular fat (IMF) content. Pol J Food Nutr Sci 2005;14:31–5.
30. Ahn J, Lee J. X chromosome: X inactivation. Nat Educ 2008;1:24.