1. Nakamura I, Ogimoto K, Imai S, Nakamura M. Production of lactic-acid isomers and change of microbial features in the rumen of feedlot cattle. J Anim Physiol Anim Nutr 1989;61:139–44.
2. Aiello RJ, Armentano LE, Bertics SJ, Murphy AT. Volatile fatty acid uptake and propionate metabolism in ruminant hepatocytes. J Dairy Sci 1989;72:942–9.
3. Seal CJ, Reynolds CK. Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutr Res Rev 1993;6:185–208.
4. Rigout S, Hurtaud C, Lemosquet S, Bach A, Rulquin H. Lactational effect of propionic acid and duodenal glucose in cows. J Dairy Sci 2003;86:243–53.
5. Sanchez PH, Tracey LN, Browne-Silva J, Lodge-Ivey SL. Propionibacterium acidipropionici P169 and glucogenic precursors improve rumen fermentation of low-quality forage in beef cattle. J Anim Sci 2014;92:1738–46.
6. Liu Q, Wang C, Guo G, et al. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers. J Agric Sci 2009;147:201–9.
7. McNamara JP, Valdez F. Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. J Dairy Sci 2005;88:2498–507.
8. Moloney AP. Growth and carcass composition in sheep offered isoenergetic rations which resulted in different concentrations of ruminal metabolites. Livest Prod Sci 1998;56:157–64.
9. Lee-Rangel HA, Mendoza GD, González SS. Effect of calcium propionate and sorghum level on lamb performance. Anim Feed Sci Technol 2012;177:237–41.
10. Miettinen H, Huhtanen P. Effects of the ratio of ruminal propionate to butyrate on milk yield and blood metabolites in dairy cows. J Dairy Sci 1996;79:851–61.
11. Hurtaud C, Rulquin H, Verite R. Effects of level and type of energy source (volatile fatty acids or glucose) on milk yield, composition and coagulating properties in dairy cows. Reprod Nutr Dev 1998;38:315–30.
12. Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and
in vitro media. J Dairy Sci 1980;63:64–75.
13. Erwin ES, Marco GJ, Emery EM. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci 1961;44:1768–71.
16. Weimer PJ, Stevenson DM, Mertens DR, Thomas EE. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Appl Microbiol Biotecnol 2008;80:135–45.
17. Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotech 2007;75:165–74.
18. Sheperd AC, Combs DK. Long-term effects of acetate and propionate on voluntary feed intake by midlactation cows. J Dairy Sci 1998;81:2240–50.
19. Beiranvand H, Ghorbani GR, Khorvash M, et al. Interactions of alfalfa hay and sodium propionate on dairy calf performance and rumen development. J Dairy Sci 2014;97:2270–80.
20. Pehrson B, Svensson C, Jonsson M. A comparative study of the effectiveness of calcium propionate and calcium chloride for the prevention of parturient paresis in dairy cows. J Dairy Sci 1998;81:2011–6.
21. Ferreira LS, Bittar CM. Performance and plasma metabolites of dairy calves fed starter containing sodium butyrate, calcium propionate or sodium monensin. Animal 2011;5:239–45.
22. Kim M, Eastridge ML, Yu Z. Investigation of ruminal bacterial diversity in dairy cattle fed supplementary monensin alone and in combination with fat, using pyrosequencing analysis. Can J Microbiol 2014;60:65–71.
23. Zhou Z, Yu Z, Meng Q. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Bioresour Technol 2012;103:173–9.
24. Mohammed R, Zhou M, Koenig KM, Beauchemin KA, Guan LL. Evaluation of rumen methanogen diversity in cattle fed diets containing dry corn distillers grains and condensed tannins using PCR-DGGE and qRT-PCR analyses. Anim Feed Sci Technol 2011;166–67:122–31.
26. Zhou Z, Meng Q, Yu Z. Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in
in vitro ruminal cultures. Appl Environ Microbiol 2011;77:2634–9.
27. Thoetkiattikul H, Mhuantong W, Laothanachareon T, et al. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Curr Microbiol 2013;67:130–7.
28. Ozutsumi Y, Tajima K, Takenaka A, Itabashi H. The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries. Biosci Biotech Bioch 2005;69:499–506.
29. Kim M, Felix TL, Loerch SC, Yu Z. Effect of haylage and monensin supplementation on ruminal bacterial communities of feedlot cattle. Curr Microbiol 2014;69:169–75.
30. Pitta DW, Kumar S, Veiccharelli B, et al. Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (
Bubalus bubalis) using 16S pyrotags. Anaerobe 2014;25:31–41.
31. Kurogi T, Linh NTT, Kuroki T, Yamada T, Hiraishi A. Culture-independent detection of “TM7” bacteria in a streptomycin-resistant acidophilic nitrifying process. Aip Conf Proc 2014;1585:53–8.
32. Yang SL, Ma SC, Chen J, et al. Bacterial diversity in the rumen of Gayals (
Bos frontalis), Swamp buffaloes (
Bubalus bubalis) and Holstein cow as revealed by cloned 16S rRNA gene sequences. Mol Biol Rep 2010;37:2063–73.
33. Stewart DJ. Biochemical and biological studies on the lipopolysaccharide of Bacteroides nodosus. Res Vet Sci 1977;23:319–25.
35. Zened A, Combes S, Cauquil L, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol 2013;83:504–14.
36. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 2008;6:121–31.