1. Jankowski J, Zdunczyk Z, Mikulski D, et al. Effect of whole wheat feeding on gastrointestinal tract development and performance of growing turkeys. Anim Feed Sci Technol 2013;185:150–9.
2. Noblet J, Fortune H, Shi XS, Dubois S. Prediction of net energy value of feeds for growing pigs. J Anim Sci 1994;72:344–54.
3. Diebold G, Mosenthin R, Piepho HP, Sauer WC. Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. J Anim Sci 2004;82:2647–56.
4. Amerah AM. Interactions between wheat characteristics and feed enzyme supplementation in broiler diets. Anim Feed Sci Technol 2015;199:1–9.
5. Chen H, Wang W, Degroote J, et al. Arabinoxylan in wheat is more responsible than cellulose for promoting intestinal barrier function in weaned male piglets. J Nutr 2015;145:51–8.
6. Kiarie E, Romero LF, Nyachoti CM. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr Res Rev 2013;26:71–88.
7. Lowe JT, Steenbock H, Keiger CH. Cereals and rickets. IX. The availability pf phytin-P to the chick. Poult Sci 1939;18:40–4.
8. Viveros A, Centeno C, Brenes A, Canales R, Lozano A. Phytase and acid phosphatase activities in plant feedstuffs. J Agric Food Chem 2000;48:4009–13.
9. Lindberg JE, Lyberg K, Sands J. Influence of phytase and xylanase supplementation of a wheat-based diet on ileal and total tract digestibility in growing pigs. Livest Sci 2007;109:268–70.
10. Bedford MR, Schulze H. Exogenous enzymes for pigs and poultry. Nutr Res Rev 1998;11:91–114.
11. Kim JC, Sands JS, Mullan BP, Pluske JR. Performance and total-tract digestibility responses to exogenous xylanase and phytase in diets for growing pigs. Anim Feed Sci Technol 2008;142:163–72.
12. Woyengo TA, Sands JS, Guenter W, Nyachoti CM. Nutrient digestibility and performance responses of growing pigs fed phytase- and xylanase-supplemented wheat-based diets. J Anim Sci 2008;86:848–57.
13. Atakora JKA, Moehn S, Sands JS, Ball RO. Effects of dietary crude protein and phytase-xylanase supplementation of wheat grain based diets on energy metabolism and enteric methane in growing finishing pigs. Anim Feed Sci Technol 2011;166–167:422–9.
14. Abdollahi MR, Ravindran V, Svihus B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim Feed Sci Technol 2013;179:1–23.
15. Lyberg K, Lundh T, Pedersen C, Lindberg JE. Influence of soaking, fermentation and phytase supplementation on nutrient digestibility in pigs offered a grower diet based on wheat and barley. Anim Sci 2006;82:853–8.
16. Blaabjerg K, Strathe AB, Poulsen HD. Modelling phytate degradation kinetics in soaked wheat and barley. Anim Feed Sci Technol 2012;175:48–56.
17. Mok CH, Kong C, Kim BG. Combination of phytase and β-mannanase supplementation on energy and nutrient digestibility in pig diets containing palm kernel expellers. Anim Feed Sci Technol 2015;205:116–21.
19. AOAC International. Official Methods of Analysis. 18thedArlington, VA: AOAC Int.; 2007.
20. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583–97.
21. Kim BG, Petersen GI, Hinson RB, Allee GL, Stein HH. Amino acid digestibility and energy concentration in a novel source of high-protein distillers dried grains and their effects on growth performance of pigs. J Anim Sci 2009;87:4013–21.
23. Jensen AH, Becker DE. Effect of pelleting diets and dietary components on the performance of young pigs. J Anim Sci 1965;24:392–7.
24. Mauron J. Influence of processing on protein quality. J Nutr Sci Vitaminol 1990;36:S57–S69.
25. Abdollahi MR, Ravindran V, Wester TJ, Ravindran G, Thomas DV. Influence of feed form and conditioning temperature on performance, apparent metabolisable energy and ileal digestibility of starch and nitrogen in broiler starters fed wheat-based diet. Anim Feed Sci Technol 2011;168:88–99.
26. Cowieson AJ, Hruby M, Isaksen MF. The effect of conditioning temperature and exogenous xylanase addition on the viscosity of wheat-based diets and the performance of broiler chickens. Br Poult Sci 2005;46:717–24.
27. Svihus B, Uhlen AK, Harstad OM. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim Feed Sci Technol 2005;122:303–20.
28. Zimonja O, Svihus B. Effects of processing of wheat or oats starch on physical pellet quality and nutritional value for broilers. Anim Feed Sci Technol 2009;149:287–97.
29. Wondra KJ, Hancock JD, Behnke KC, Hines RH, Stark CR. Effects of particle-size and pelleting on growth-performance, nutrient digestibility, and stomach morphology in finishing pigs. J Anim Sci 1995;73:757–63.
30. Wu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br Poult Sci 2004;45:76–84.
31. Pallauf J, Rimbach G. Nutritional significance of phytic acid and phytase. Arch Anim Nutr 1997;50:301–19.
32. Selle PH, Ravindran V. Phytate-degrading enzymes in pig nutrition. Livest Sci 2008;113:99–122.
33. Brady SM, Callan JJ, Cowan D, McGrane M, O’Doherty JV. Effect of phytase inclusion and calcium/phosphorus ratio on the performance and nutrient retention of grower-finisher pigs fed barley/wheat/soya bean meal-based diets. J Sci Food Agric 2002;82:1780–90.
34. Shelton JL, Southern LL, Bidner TD, et al. Effect of microbial phytase on energy availability, and lipid and protein deposition in growing swine. J Anim Sci 2003;81:2053–62.
35. Nortey TN, Patience JF, Simmins PH, Trottier NL, Zijlstra RT. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun. J Anim Sci 2007;85:1432–43.
36. Kies AK, Van Hemert KHF, Sauer WC. Effect of phytase on protein and amino acid digestibility and energy utilisation. Worlds Poult Sci J 2001;57:109–26.
37. Zeng ZK, Piao XS, Wang D, et al. Effect of microbial phytase on performance, nutrient absorption and excretion in weaned pigs and apparent ileal nutrient digestibility in growing pigs. Asian-Australas J Anim Sci 2011;24:1164–72.
40. Moehn S, Atakora JKA, Sands J, Ball RO. Effect of phytase-xylanase supplementation to wheat-based diets on energy metabolism in growing-finishing pigs fed
ad libitum. Livest Sci 2007;109:271–4.
41. Pedersen MB, Yu S, Arent S, et al. Xylanase increased the ileal digestibility of nonstarch polysaccharides and concentration of low molecular weight nondigestible carbohydrates in pigs fed high levels of wheat distillers dried grains with solubles. J Anim Sci 2015;93:2885–93.
42. Larke HN, Arent S, Dalsgaard S, Bach Knudsen KE. Effect of xylanases on ileal viscosity, intestinal fiber modification, and apparent ileal fiber and nutrient digestibility of rye and wheat in growing pigs. J Anim Sci 2015;93:4323–35.
43. Nortey TN, Patience JF, Sands JS, Trottier NL, Zijlstra RT. 2008;Effects of xylanase supplementation on the apparent digestibility and digestible content of energy, amino acids, phosphorus, and calcium in wheat and wheat by-products from dry milling fed to grower pigs. J Anim Sci 2008;86:3450–64.
44. Metzler-Zebeli BU, Mosenthin R. A review of interactions between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosphorus metabolism in growing pigs. Asian-Australas J Anim Sci 2008;21:603–15.
45. Metzler-Zebeli BU, Zijlstra RT, Mosenthin R, Ganzle MG. Dietary calcium phosphate content and oat beta-glucan influence gastrointestinal microbiota, butyrate-producing bacteria and butyrate fermentation in weaned pigs. FEMS Microbiol Ecol 2011;75:402–13.
46. Metzler-Zebeli BU, Ganzle MG, Mosenthin R, Zijlstra RT. Oat beta-glucan and dietary calcium and phosphorus differentially modify intestinal expression of proinflammatory cytokines and monocarboxylate transporter 1 and cecal morphology in weaned pigs. J Nutr 2012;142:668–74.
47. Jongbloed AW, Kemme PA. Effect of pelleting mixed feeds on phytase activity and the apparent absorbability of phosphorus and calcium in pigs. Anim Feed Sci Technol 1990;28:233–42.