Estimation of Interaction Effects among Nucleotide Sequence Variants in Animal Genomes |
Chaeyoung Lee*, Younyoung Kim |
|
Correspondence:
Chaeyoung Lee, |
|
|
Abstract |
Estimating genetic interaction effects in animal genomics would be one of the most challenging studies because the phenotypic variation for economically important traits might be largely explained by interaction effects among multiple nucleotide sequence variants under various environmental exposures. Genetic improvement of economic animals would be expected by understanding multi-locus genetic interaction effects associated with economic traits. Most analyses in animal breeding and genetics, however, have excluded the possibility of genetic interaction effects in their analytical models. This review discusses a historical estimation of the genetic interaction and difficulties in analyzing the interaction effects. Furthermore, two recently developed methods for assessing genetic interactions are introduced to animal genomics. One is the restricted partition method, as a nonparametric grouping-based approach, that iteratively utilizes grouping of genotypes with the smallest difference into a new group, and the other is the Bayesian method that draws inferences about the genetic interaction effects based on their marginal posterior distributions and attains the marginalization of the joint posterior distribution through Gibbs sampling as a Markov chain Monte Carlo. Further developing appropriate and efficient methods for assessing genetic interactions would be urgent to achieve accurate understanding of genetic architecture for complex traits of economic animals. |
Keywords:
Animal Genomics; Bayesian Inference; Epistasis; Gibbs Sampling; Single Nucleotide Polymorphism |
|