Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 2002;15(9): 1232-1236.
https://doi.org/10.5713/ajas.2002.1232    Published online January 1, 2002.
Estimation of Direct and Service Sire Genetic Parameters for Reproductive Traits in Yorkshire
B. W. Kim, S. D. Kim, I. J. Lee, K. H. Chung, O. S. Kwon, J. K. Ha, J. G. Lee
Direct and service sire genetic parameters for total number of pigs born (TNB), number of pigs born alive (NBA), total pig weight at birth (TWB), and average pig birth weight (ABW) were estimated by DF-REML under a multiple trait animal model. Data on 3,078 litters of the Yorkshire from Jan, 1975 to Dec, 1998 at National Livestock Research Institute were obtained. The animal model included fixed contemporary group effects and random additive direct, service sire, and residual effects. Additive genetic relationships among animals were included. A separate relationship matrix for service sires and their sire was also included. Additive direct heritability estimates for TNB, NBA, TWB, and ABW were 0.19, 0.18, 0.25 and 0.39, respectively. Service sire heritability estimates for TNB, NBA, TWB, and ABW were 0.02, 0.01, 0.02 and 0.01, respectively. The genetic and phenotypic correlations of TNB with NBA estimated in this study were 0.81 and 0.81, respectively, and the genetic and phenotypic correlations of TNB with TWB estimated were 0.82 and 0.76, respectively. Results indicate that service sires account for 1 to 2% of the total variation for TNB, NBA, TWB, and ABW. Further investigation is needed to determine whether the service sire effect is primarily genetic or environmental.
Keywords: Service Sire Effect; Genetic Correlation; Litter Size; Litter Weight; Genetic Parameters

Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : animbiosci@gmail.com               

Copyright © 2022 by Animal Bioscience.

Developed in M2PI

Close layer
prev next