Go to Top Go to Bottom
Animal Breeding and Genetics
Asian-Australasian Journal of Animal Sciences 1997;10(4): 428-434.
https://doi.org/10.5713/ajas.1997.428    Published online August 1, 1997.
Comparison of breeding system between single population and two sub-population scheme by computer simulation II. Different genetic level for sub-populations
T. Oikawa, Y. Matsura, K. Sato
The effect of genetic diversity in subpopulations on breeding efficiency was examined with prospect of potential crossbreeding. Simulation study of selection was performed for 20 generations with 20 replications each, comparing average breeding values and inbreeding coefficients between the two breeding systemes; single population scheme and two population scheme. The different genetic levels were assumed to be caused by different gene frequencies. Phenotypes of two traits generated polygenic effect with additive 36 loci and residuals distributed normally were selected by selection index procedure. High genetic gain with less inbreeding was clearly recognized in the single population scheme, independently of difference in genetic level, economic weight and genetic correlation. Genetic correlation after selection in the single population scheme was lower than the two population scheme. When crossbreeding between the sub-population was taken into account, superiority of the two population scheme was suggested under those restrictions; difference in genetic level is moderate, selection criterion for the two traits is not far from even economic weight, and genetic correlation is positive with low to moderate value. The use of complementarity increased the possibility of the two population scheme.
Keywords: Simulation; Selection; Crossbreeding; Population Structure; Genetic Level

Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : animbiosci@gmail.com               

Copyright © 2023 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next