Growth, Feed Utilization and Nutrient Retention of Juvenile Olive Flounder (Paralichthys olivaceus) Fed Moist, Semi-moist and Extruded Diets |
J.-D. Kim*, S.-H. Shin |
|
Correspondence:
J.-D. Kim, |
|
|
|
Abstract |
In an attempt to develop an artificial diet for growing olive flounder (Paralichthys olivaceus), weight gain, feed utilization and nutrient retention were investigated in fish fed moist (MP), semi-moist (SMP) and extruded pellets (EP). Excretion of nitrogen and phosphorus was also estimated based on their whole body gain and intake. EP and MP composed of raw fish and SMP made of formulated powder feed with water were prepared to have the same energy contents on a dry matter basis. A total of 240 fish with an average initial weight of 120 g were randomly distributed to each (20 fish/tank) of 12 circular plastic tanks (4 tanks/treatment) and fed experimental diets for 8 weeks. Fish groups fed EP (209 g) or SMP (209 g) recorded higher final weight than those fed MP (176 g), while dry feed consumption was highest in SMP groups (106 g), followed by MP (71 g) and EP groups (62 g). As a consequence, fish groups fed EP showed much lower feed conversion ratio than the other two groups. Protein efficiency ratio was also significantly higher in fish groups fed EP (2.55) than in those fed MP (1.44) and SMP (1.31). Fish groups fed EP, which showed the highest nitrogen retention of 43.9%, resulted in the lowest excretion of nitrogen of 35.5 g per kg gain. Also, the lowest phosphorus excretion of 6.0 g per kg gain was found in the EP groups with the highest P retention (37.0%) among treatments. Although the EP groups had the lowest dietary energy intake, they retained the highest energy in the whole body among treatments. The present results showed that EP could be more advantageous than MP or SMP in terms of growth, feed utilization and excretion of nitrogen and phosphorus for olive flounder. |
Keywords:
Paralichthys olivaceus; Extruded Pellet; Semi-moist Pellet; Moist Pellet; Growth; Nitrogen Retention, Phosphorus |
|