Effects of Probiotic-vitacogen and β1-4 Galacto-oligosaccharides Supplementation on Methanogenesis and Energy and Nitrogen Utilization in Dairy Cows |
B. Mwenya, X. Zhou, B. Santoso, C. Sar, Y. Gamo, T. Kobayashi, J. Takahashi |
|
|
|
|
Abstract |
The effects of probiotic-vitacogen and galacto-oligosaccharides (GOS) supplementation on methanogesis, energy and nitrogen utilization in replacement dairy cows were evaluated. A basal diet comprising orchardgrass hay, lucerne hay cube and concentrate (2:2:1, DM basis) were fed with or without supplements to four cows at 80 g DM /kgBW0.75 per day in a 4 4 Latin square arrangement. The four treatments were; 1) basal diet, 2) basal diet plus 100 g probiotic-vitacogen, 3) basal diet plus 50 g GOS, 4) basal diet plus 50 g GOS and 100 g probiotic-vitacogen. Nutrient apparent digestibility was not altered by the effect of supplementation. Nitrogen intake was significantly (p<0.001) higher for the two vitacogen-supplemented diets compared to control and GOS supplemented diets. However, vitacogen supplemented diets had numerically higher fecal and urinary nitrogen losses, thereby, having lower nitrogen retention compared to control and GOS supplemented diets. Gross energy intake was also significantly (p<0.05) higher for vitacogen-supplemented diets compared to control and GOS diets, however, due to higher losses in feces, urine, methane and heat, GOS supplemented diet had numerically higher energy retention. There was an 11% reduction in methane emission (liters/day) in GOS supplemented diet compared to control diet. However, the combination of GOS with vitacogen resulted in an increased methane emission. When expressed per unit of animal production (g/kg live-weight gain), methane production tended to be lower in vitacogen-supplemented diets compared to control and GOS diets. The supplementation of replacement dairy cows with GOS reduced methane emission (liters/day), while, vitacogen supplementation reduced methane emission per unit animal production. The two feed supplements may contribute to the abatement of methane as a greenhouse gas. |
Keywords:
Methanogenesis; Probiotics; Galacto-oligosaccharides; Cows |
|