1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281–97.
3. Masi LN, Serdan TDA, Levada-Pires AC, et al. Regulation of gene expression by exercise-related micrornas. Cell Physiol Biochem 2016;39:2381–97.
https://doi.org/10.1159/000452507
5. Horikawa A, Ogasawara H, Okada K, Kobayashi M, Muroya S, Hojito M. Grazing-induced changes in muscle microRNA-206 and -208b expression in association with myogenic gene expression in cattle. Anim Sci J 2015;86:952–60.
https://doi.org/10.1111/asj.12381
6. Muroya S, Shibata M, Hayashi M, Oe M, Ojima K. Differences in Circulating microRNAs between grazing and grain-fed wagyu cattle are associated with altered expression of intramuscular microRNA, the potential target
PTEN, and lipogenic genes. PLoS One 2016;11:e0162496.
https://doi.org/10.1371/journal.pone.0162496
15. Zhang B, Yang Y, Xiang L, Zhao Z, Ye R. Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes. 2019;234:16692–702.
https://doi.org/10.1002/jcp.28354
19. Wilson RA, Deasy W, Hayes A, Cooke MB. High fat diet and associated changes in the expression of micro-RNAs in tissue: Lessons learned from animal studies. Mol Nutr Food Res 2017;61:1600943.
https://doi.org/10.1002/mnfr.201600943
21. Shrestha A, Mukhametshina RT, Taghizadeh S, et al. MicroRNA-142 is a multifaceted regulator in organogenesis, homeostasis, and disease. Dev Dyn 2017;246:285–90.
https://doi.org/10.1002/dvdy.24477
22. Sjogren RJO, Lindgren Niss MHL, Krook A. Skeletal muscle microRNAs: roles in differentiation, disease and exercise. Spiegelman B, editorHormones, metabolism and the benefits of exercise. Cham, Switzerland: Springer; 2017. p. 67–81.
25. Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 2017;28:3–18.
https://doi.org/10.1016/j.tem.2016.10.003
28. Mobuchon L, Le Guillou S, Marthey S, et al. Sunflower oil supplementation affects the expression of
miR-20a-5p and
miR-142-5p in the lactating bovine mammary gland. PLoS One 2017;12:e0185511.
https://doi.org/10.1371/journal.pone.0185511
29. Ogasawara J, Izawa T, Sakurai T, et al. Habitual exercise training acts as a physiological stimulator for constant activation of lipolytic enzymes in rat primary white adipocytes. Biochem Biophys Res Commun 2015;464:348–53.
https://doi.org/10.1016/j.bbrc.2015.06.157
32. Kershaw EE, Schupp M, Guan HP, Gardner NP, Lazar MA, Flier JS. PPARgamma regulates adipose triglyceride lipase in adipocytes
in vitro and
in vivo
. Am J Physiol Endocrinol Metab 2007;293:E1736–45.
https://doi.org/10.1152/ajpendo.00122.2007
33. Jenkins-Kruchten AE, Bennaars-Eiden A, Ross JR, Shen WJ, Kraemer FB, Bernlohr DA. Fatty acid-binding protein-hormone-sensitive lipase interaction. Fatty acid dependence on binding. J Biol Chem 2003;278:47636–43.
https://doi.org/10.1074/jbc.M307680200
34. Schroeder F, Petrescu AD, Huang H, et al. Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 2008;43:1–17.
https://doi.org/10.1007/s11745-007-3111-z