1. Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 2009;92:1060–70.
https://doi.org/10.3168/jds.2008-1389
2. Zebeli Q, Mansmann D, Steingass H, Ametaj BN. Balancing diets for physically effective fibre and ruminally degradable starch: A key to lower the risk of sub-acute rumen acidosis and improve productivity of dairy cattle. Livest Sci 2010;127:1–10.
https://doi.org/10.1016/j.livsci.2009.09.003
5. Dailey OD, Dowd MK, Mayorga JC. Influence of lactic acid on the solubilization of protein during corn steeping. J Agric Food Chem 2000;48:1352–7.
https://doi.org/10.1021/jf990866s
6. Iqbal S, Zebeli Q, Mazzolari A, et al. Feeding barley grain steeped in lactic acid modulates rumen fermentation patterns and increases milk fat content in dairy cows. J Dairy Sci 2009;92:6023–32.
https://doi.org/10.3168/jds.2009-2380
7. Iqbal S, Terrill SJ, Zebeli Q, et al. Treating barley grain with lactic acid and heat prevented sub-acute ruminal acidosis and increased milk fat content in dairy cows. Anim Feed Sci Technol 2012;172:141–9.
https://doi.org/10.1016/j.anifeedsci.2011.12.024
8. Deckardt K, Metzler-Zebeli BU, Zebeli Q. Processing barley grain with lactic acid and tannic acid ameliorates rumen microbial fermentation and degradation of dietary fibre in vitro. J Sci Food Agric 2016;96:223–31.
https://doi.org/10.1002/jsfa.7085
9. Vötterl JC, Zebeli Q, Hennig-Pauka I, Metzler-Zebeli BU. Soaking in lactic acid lowers the phytate-phosphorus content and increases the resistant starch in wheat and corn grains. Anim Feed Sci Technol 2019;252:115–25.
https://doi.org/10.1016/j.anifeedsci.2019.04.013
12. Martínez TF, McAllister TA, Wang Y, Reuter T. Effects of tannic acid and quebracho tannins on in vitro ruminal fermentation of wheat and corn grain. J Sci Food Agric 2006;86:1244–56.
https://doi.org/10.1002/jsfa.2485
13. National Research Council (NRC). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, DC, USA: National Academic Press; 2007.
14. Tian K, Liu J, Sun Y, et al. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Anim Feed Sci Technol 2019;258:114299.
https://doi.org/10.1016/j.anifeedsci.2019.114299
15. Horwitz W. AOAC International Official methods of analysis of AOAC International. 18th edGaithersburg, MD, USA: AOAC International; 2005.
18. Aldian D, Harisa LD, Mitsuishi H, Tian K, Iwasawa A, Yayota M. Diverse forage improves lipid metabolism and antioxidant capacity in goats, as revealed by metabolomics. Animal 2023;17:100981.
https://doi.org/10.1016/j.animal.2023.100981
20. Pang Z, Zhou G, Ewald J, et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat Protoc 2022;17:1735–61.
https://doi.org/10.1038/s41596-022-00710-w
21. Mickdam E, Khiaosa-ard R, Metzler-Zebeli BU, et al. Modulation of ruminal fermentation profile and microbial abundance in cows fed diets treated with lactic acid, without or with inorganic phosphorus supplementation. Anim Feed Sci Technol 2017;230:1–12.
https://doi.org/10.1016/j.anifeedsci.2017.05.017
25. Skrede G, Herstad O, Sahlstrøm S, Holck A, Slinde E, Skrede A. Effects of lactic acid fermentation on wheat and barley carbohydrate composition and production performance in the chicken. Anim Feed Sci Technol 2003;105:135–48.
https://doi.org/10.1016/S0377-8401(03)00055-5
28. Harder H, Khol-Parisini A, Zebeli Q. Modulation of resistant starch and nutrient composition of barley grain using organic acids and thermal cycling treatments. Starch-Stärke 2015;67:654–62.
https://doi.org/10.1002/star.201500040
29. Iqbal S, Zebeli Q, Mazzolari A, Dunn SM, Ametaj BN. Feeding rolled barley grain steeped in lactic acid modulated energy status and innate immunity in dairy cows. J Dairy Sci 2010;93:5147–56.
https://doi.org/10.3168/jds.2010-3118
30. Serna-Saldívar SO, Mezo-Villanueva M. Effect of a cell-wall-degrading enzyme complex on starch recovery and steeping requirements of sorghum and maize. Cereal Chem 2003;80:148–53.
https://doi.org/10.1094/CCHEM.2003.80.2.148
32. Hellebois T, Gaiani C, Planchon S, Renaut J, Soukoulis C. Impact of heat treatment on the acid induced gelation of brewers’ spent grain protein isolate. Food Hydrocoll 2021;113:106531.
https://doi.org/10.1016/j.foodhyd.2020.106531
34. Harder H, Khol-Parisini A, Metzler-Zebeli BU, Klevenhusen F, Zebeli Q. Treatment of grain with organic acids at 2 different dietary phosphorus levels modulates ruminal microbial community structure and fermentation patterns in vitro. J Dairy Sci 2015;98:8107–20.
https://doi.org/10.3168/jds.2015-9913
38. Tie S, Zhang L, Li B, et al. Effect of dual targeting procyanidins nanoparticles on metabolomics of lipopolysaccharide-stimulated inflammatory macrophages. Food Sci Hum Wellness 2023;12:2252–62.
https://doi.org/10.1016/j.fshw.2023.03.045
39. Chen XB, Gomes MJ. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives: an overview of the technical details. Aberdeen, UK: International Feed Resources Unit, Rowett Research Institute; 1992.