1. Terry SA, Romero CM, Chaves AV, McAllister TA. Nutritional factors affecting greenhouse gas production from ruminants: implications for enteric and manure emissions. Improving rumen function. London, UK: Burleigh Dodds Science Publishing; 2020. p. 505–46.
https://doi.org/10.1201/9781003047841
2. McAllister TA, Meale SJ, Valle E, et al. Ruminant nutrition symposium: use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis. J Anim Sci 2015;93:1431–49.
https://doi.org/10.2527/jas.2014-8329
4. Gerber PJ, Steinfeld H, Henderson B, et al. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2013.
6. Mackie RI, White BA, Bryant MP. Methanogenesis, biochemistry. Encycl Microbiol 1992;3:97–109.
10. Leahy SC, Janssen PH, Attwood GT, Mackie RI, McAllister TA, Kelly WJ. Electron flow: key to mitigating ruminant methanogenesis. Trends Microbiol 2022;30:209–12.
https://doi.org/10.1016/j.tim.2021.12.005
12. Söllinger A, Urich T. Methylotrophic methanogens everywhere — physiology and ecology of novel players in global methane cycling. Biochem Soc Trans 2019;47:1895–907.
https://doi.org/10.1042/BST20180565
16. Poulsen M, Schwab C, Jensen BB, et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 2013;4:1428.
https://doi.org/10.1038/ncomms2432
17. Söllinger A, Tveit AT, Poulsen M, et al. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 2018;3:10.1128/msystems.00038.18
https://doi.org/10.1128/msystems.00038-18
21. Zinder SH. Physiological ecology of methanogens. Ferry JG, editorMethanogenesis: ecology, physiology, biochemistry and genetics. Boston, MA, USA: Springer; 1993. p. 128–206.
https://doi.org/10.1007/978-1-4615-2391-8_4
23. Greening C, Biswas A, Carere CR, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 2016;10:761–77.
https://doi.org/10.1038/ismej.2015.153
24. Poudel S, Tokmina-Lukaszewska M, Colman DR, et al. Unification of [FeFe]-hydrogenases into three structural and functional groups. Biochim Biophys Acta Gen Subj 2016;1860:1910–21.
https://doi.org/10.1016/j.bbagen.2016.05.034
25. Vignais PM, Billoud B. Occurrence, classification, and biolo gical function of hydrogenases: an overview. Chem Rev 2007;107:4206–72.
https://doi.org/10.1021/cr050196r
26. Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta Bioenerg 2013;1827:94–113.
https://doi.org/10.1016/j.bbabio.2012.07.002
37. Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 2010;160:1–22.
https://doi.org/10.1016/j.anifeedsci.2010.07.002
44. Van Zijderveld SM, Gerrits WJJ, Apajalahti JA, et al. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J Dairy Sci 2010;93:5856–66.
https://doi.org/10.3168/jds.2010-3281
45. Leng RA. Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Anim Prod Sci 2014;54:519–43.
https://doi.org/10.1071/an13381
47. Nakamura N, Lin HC, McSweeney CS, Mackie RI, Gaskins HR. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol 2010;1:363–95.
https://doi.org/10.1146/annurev.food.102308.124101
52. IPCC CC. The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007. p. 113–9.
53. Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020;14:S1s2–s16.
https://doi.org/10.1017/S1751731119003100
58. Rowe S, Hickey S, Jonker A, et al. Selection for divergent methane yield in New Zealand sheep–a ten-year perspective. Proc Assoc Advmt Anim Breed Genet 2019;23:306–9.
59. Pinares-Patiño C, Ebrahimi SH, McEwan J, et al. Is rumen retention time implicated in sheep differences in methane emission. In : Proceedings of the New Zealand Society of Animal Production; 2011; New Zealand Society of Animal Production Wellington; New Zealand:
63. Joblin KN. Ruminal acetogens and their potential to lower ruminant methane emissions. Aust J Agric Res 1999;50:1307–14.
https://doi.org/10.1071/AR99004
65. Leng RA. Unravelling methanogenesis in ruminants, horses and kangaroos: the links between gut anatomy, microbial biofilms and host immunity. Anim Prod Sci 2018;58:1175–91.
https://doi.org/10.1071/AN15710