4. Lin H, Du R, Gu XH, Li FC, Zhang ZY. A study on the plasma biochemical indices of heat-stressed broilers. Asian-Australas J Anim Sci 2000;13:1210–8.
https://doi.org/10.5713/ajas.2000.1210
5. Lan PTN, Sakamoto M, Benno Y. Effects of two probiotic
Lactobacillus strains on jejunal and cecal microbiota of broiler chicken under acute heat stress condition as revealed by molecular analysis of 16S rRNA genes. Microbiol Immunol 2004;48:917–29.
https://doi.org/10.1111/j.1348-0421.2004.tb03620.x
6. Kucuk O, Sahin N, Sahin K. Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biol Trace Elem Res 2003;94:225–35.
https://doi.org/10.1385/BTER:94:3:225
7. Saeed M, Babazadeh D, Naveed M, Arain MA, Hassan FU, Chao S. Reconsidering betaine as a natural anti-heat stress agent in poultry industry: A review. Trop Anim Health Prod 2017;49:1329–38.
https://doi.org/10.1007/s11250-017-1355-z
9. Ratriyanto A, Mosenthin R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J Anim Physiol Anim Nutr 2018;102:1634–50.
https://doi.org/10.1111/jpn.12990
10. Xie J, Tang L, Lu L, et al. Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (
Gallus gallus). PloS One 2014;9:e102204.
https://doi.org/10.1371/journal.pone.0102204
14. Yang Z, Yang HM, Gong DQ, et al. Transcriptome analysis of hepatic gene expression and DNA methylation in methionine- and betaine-supplemented geese (Anser cygnoides domesticus). Poult Sci 2018;97:3463–77.
https://doi.org/10.3382/ps/pey242
15. Aviagen . Ross 308 broiler: nutrition specifications. Huntsville, AL, USA: Aviagen Inc; 2018.
20. Habashy WS, Milfort MC, Adomako K, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens. Poult Sci 2017;96:2312–9.
https://doi.org/10.3382/ps/pex027
21. Habashy WS, Milfort MC, Fuller AL, Attia YA, Rekaya R, Aggrey SE. Effect of heat stress on protein utilization and nutrient transporters in meat-type chickens. Int J Biometeorol 2017;61:2111–8.
https://doi.org/10.1007/s00484-017-1414-1
23. Ji FJ, Wang LX, Yang HS, Hu A, Yin YL. Review: The roles and functions of glutamine on intestinal health and performance of weaning pigs. Animal 2019;13:2727–35.
https://doi.org/10.1017/S1751731119001800
24. Farag MR, Alagawany M, El-Hack MEA, et al. Role of chromium in poultry nutrition and health: Beneficial applications and toxic effects. Int J Pharmacol 2017;13:907–15.
https://doi.org/10.3923/ijp.2017.907.915
26. Metzler-Zebeli BU, Eklund M, Mosenthin R. Impact of osmoregulatory and methyl donor functions of betaine on intestinal health and performance in poultry. Worlds Poult Sci J 2009;65:419–42.
https://doi.org/10.1017/S0043933909000300
32. Mori Y, Inoue Y, Taniyama Y, Tanaka S, Terada Y. Phosphorylation of the centrosomal protein, Cep169, by Cdk1 promotes its dissociation from centrosomes in mitosis. Biochem Biophys Res Commun 2015;468:642–6.
https://doi.org/10.1016/j.bbrc.2015.11.004
40. Nedergaard S, Bolam JP, Greenfield SA. Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra. Nature 1988;333:174–7.
https://doi.org/10.1038/333174a0
47. Wang G, Kim WK, Cline MA, Gilbert ER. Factors affecting adipose tissue development in chickens: A review. Poult Sci 2017;96:3687–99.
https://doi.org/10.3382/ps/pex184
48. Saunderson CL, Mackinlay J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br J Nutr 1990;63:339–49.
https://doi.org/10.1079/BJN19900120
56. Berndt A, Pieper J, Methner U. Circulating γδ T cells in response to
Salmonellaenterica serovar Enteritidis exposure in chickens. Infect Immun 2006;74:3967–78.
https://doi.org/10.1128/IAI.01128-05