3. Kristensen NB, Harmon DL. Splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. J Anim Sci 2004;82:2033–42.
https://doi.org/10.2527/2004.8272033x
4. Pescara JB, Pires JAA, Grummer RR. Antilipolytic and lipolytic effects of administering free or ruminally protected nicotinic acid to feed-restricted Holstein cows. J Dairy Sci 2010;93:5385–96.
https://doi.org/10.3168/jds.2010-3402
5. Titgemeyer EC, Spivey KS, Mamedova LK, Bradford BJ. Effects of pharmacological amounts of nicotinic acid on lipolysis and feed intake in cattle. Int J Dairy Sci 2011;6:134–41.
https://doi.org/10.3923/ijds.2011.134.141
10. Erickson PS, Trusk AM, Murphy MR. Effects of niacin source on epinephrine stimulation of plasma nonesterified fatty acid and glucose concentrations, on diet digestibility and on rumen protozoal numbers in lactating dairy cows. J Nutr 1990;120:1648–53.
https://doi.org/10.1093/jn/120.12.1648
14. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol 2016;18:1403–14.
https://doi.org/10.1111/1462-2920.13023
21. Samanta AK, Kewalramani N, Kaur H. Effect of niacin supplementation on VFA production and microbial protein synthesis in cattle. Indian J Dairy Sci 2000;53:150–3.
22. Ghosh NR, Kewalramani N, Kaur H. Comparative efficacy of niacin vs nicotinamide on rumen fermentation in buffaloes fed straw hased diets. Buffalo J 2003;19:249–59.
25. Aschemann M, Lebzien P, Huther L, Döll S, Südekum KH, Dänicke S. Effect of niacin supplementation on digestibility, nitrogen utilisation and milk and blood variables in lactating dairy cows fed a diet with a negative rumen nitrogen balance. Arch Anim Nutr 2012;66:200–14.
https://doi.org/10.1080/1745039x.2012.676813
28. Fangmann D, Theismann E, Türk K, et al. Targeted Microbiome intervention by microencapsulated delayed-release niacin beneficially affects insulin sensitivity in humans. Diabetes Care 2018;41:398–405.
https://doi.org/10.2337/dc17-1967
30. Huws SA, Kim EJ, Lee MRF, et al. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ Microbiol 2011;13:1500–12.
https://doi.org/10.1111/j.1462-2920.2011.02452.x
35. Jacobs DM, Gaudier E, van Duynhoven J, et al. Non-digestible food ingredients, colonic microbiota and the impact on gut health and immunity: a role for metabolomics. Curr Drug Metab 2009;10:41–54.
https://doi.org/10.2174/138920009787048383
38. Simunek J Jr, Killer J, Sechovcova H, et al. Characterization of a xylanolytic bacterial strain C10 isolated from the rumen of a red deer (Cervus elaphus) closely related of the recently described species Actinomyces succiniciruminis, A. glycerinitolerans, and A. ruminicola. Folia Microbiol (Praha) 2018;63:391–9.
https://doi.org/10.1007/s12223-017-0577-9
41. Aurilia V, Martin JC, McCrae SI, Scott KP, Rincon MT, Flint HJ. Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences. Microbiology 2000;146:Pt 61391–7.
https://doi.org/10.1099/00221287-146-6-1391
42. Giraud I, Besle J, Fonty G. Hydrolysis and degradation of esterified phenolic acids from the maize cell wall by rumen microbial species. Reprod Nutr Dev 1997;37:Suppl 152–3.
https://doi.org/10.1051/rnd:19970733
43. Xie J, Li LF, Dai TY, et al. Short-chain fatty acids produced by ruminococcaceae mediate alpha-linolenic acid promote intestinal stem cells proliferation. Mol Nutr Food Res 2022;66:e2100408.
https://doi.org/10.1002/mnfr.202100408
44. Ritalahti KM, Justicia-Leon SD, Cusick KD, et al. Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol 2012;62:210–6.
https://doi.org/10.1099/ijs.0.023986-0
46. Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 2010;104:919–29.
https://doi.org/10.1017/S0007114510001303