3. Bougrier C, Delgenès JP, Carrère H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem Eng J 2008;139:236–44.
https://doi.org/10.1016/j.cej.2007.07.099
4. Cao Z, Jung D, Olszewski MP, Arauzo PJ, Kruse A. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Manag 2019;100:138–50.
https://doi.org/10.1016/j.wasman.2019.09.009
5. Wirth B, Eberhardt G, Lotze-Campen H, et al. Hydrothermal carbonization: influence of plant capacity, feedstock choice and location on product cost. In : Proceedings of 19th European Biomass Conference & Exhibition; 2011 Jun 6–10; Berlin, Germany.
6. Ferrer I, Ponsá S, Vázquez F, Font X. Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 2008;42:186–92.
https://doi.org/10.1016/j.bej.2008.06.020
8. Ramke HG, Blöhse D, Lehmann HJ, Fettig J. Hydrothermal carbonization of organic waste. Cossu R, Diaz LF, Stegman R, editorsTwelfth International Waste Management and Landfill Symphosium. Sardina, Italy: CISA pub; 2009.
9. Ahring BK, Ibrahim AA, Mladenovska Z. Effect of temperature increase from 55 to 65 degrees C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res 2001;35:2446–52.
https://doi.org/10.1016/S0043-1354(00)00526-1
10. Marin-Batista J, Villamil J, Qaramaleki S, Coronella C, Mohedano A, de La Rubia M. Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion. Renew Energy 2020;160:623–32.
https://doi.org/10.1016/j.renene.2020.07.003
11. Omar R, Harun RM, Mohd Ghazi T, et al. Anaerobic treatment of cattle manure for biogas production. In : Proceedings Philadelphia, Annual Meeting of American Institute of Chemical Engineers; 2008.
13. Angelidaki I, Alves M, Bolzonella D, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 2009;59:927–34.
https://doi.org/10.2166/wst.2009.040
15. Luna-deRisco M, Normak A, Orupõld K. Biochemical methane potential of different organic wastes and energy crops from Estonia. Agron Res 2011;9:1–2331–42.
16. Rice E, Baird R, Eaton A, Clesceri L; APHA (American Public Health Association). Standard method for the examination of water and wastewater. Washington DC, USA: American Water Works Association and Water Environment Federation; 2012.
17. Sørensen AH, Winther-Nielsen M, Ahring BK. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl Microbiol Biotechnol 1991;34:823–7.
https;//doi.org/10.1007/bf00169358
18. Ardİc I, Taner F. Effects of thermal, chemical and thermochemical pretreatments to increase biogas production yield of chicken manure. Fresenius Environ Bull 2005;14:373–80.
19. Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK. Thermal pretreatment of the solid fraction of manure: impact on the biogas reactor performance and microbial community. Water Sci Technol 2006;53:59–67.
https://doi.org/10.2166/wst.2006.236
20. Yoneyama N, Morimoto H, Ye CX, Ashihara H, Mizuno K, Kato M. Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol Genet Genomics 2006;275:125–35.
https://doi.org/10.1007/s00438-005-0070-z
23. Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod Biorefin 2010;4:160–77.
https://doi.org/10.1002/bbb.198
24. Libra JA, Ro KS, Kammann C, et al. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2011;2:71–106.
https://doi.org/10.4155/bfs.10.81
25. Kim SH, Kim H, Kim CH, et al. Effect of the pretreatment by thermal hydrolysis on biochemical methane potential of piggery sludge. Korean J Soil Sci Fert 2012;45:524–31.
https://doi.org/10.7745/KJSSF.2012.45.4.524
26. Gossett RW, Brown DA, Young DR. Predicting the bioaccumulation and toxicity of organic compounds. Coastal Water Research Project Biennial Report 1981;1982:149–56.
29. Oh SY, Yoon YM. Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization. Energies 2017;10:1876.
https://doi.org/10.3390/en10111876