2. Mach N, Berri M, Estellé J, et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep 2015;7:554–69.
https://doi.org/10.1111/1758-2229.12285
4. Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol 2017;25:851–73.
https://doi.org/10.1016/j.tim.2017.05.004
7. Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl) 2013;97:207–37.
https://doi.org/10.1111/j.1439-0396.2012.01284.x
8. Aarestrup FM, Jensen VF, Emborg HD, Jacobsen E, Wegener HC. Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am J Vet Res 2010;71:726–33.
https://doi.org/10.2460/ajvr.71.7.726
9. Zhao J, Bai Y, Tao S, et al. Fiber-rich foods affected gut bacterial community and short-chain fatty acids production in pig model. J Funct Foods 2019;57:266–74.
https://doi.org/10.1016/j.jff.2019.04.009
12. Gerrits WJ, Bosch MW, van den Borne JJ. Quantifying resistant starch using novel, in vivo methodology and the energetic utilization of fermented starch in pigs. J Nutr 2012;142:238–44.
https://doi.org/10.3945/jn.111.147496
13. Regmi PR, Metzler-Zebeli BU, Gänzle MG, van Kempen TATG, Zijlstra RT. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes Bifidobacteria in pigs. J Nutr 2011;141:1273–80.
https://doi.org/10.3945/jn.111.140509
14. Nielsen TS, Lærke HN, Theil PK, et al. Diets high in resistant starch and arabinoxylan modulate digestion processes and scfa pool size in the large intestine and faecal microbial composition in pigs. Br J Nutr 2014;112:1837–49.
https://doi.org/10.1017/S000711451400302X
16. Fang L, Jiang X, Su Y, Zhu W. Long-term intake of raw potato starch decreases back fat thickness and dressing percentage but has no effect on the longissimus muscle quality of growing–finishing pigs. Livest Sci 2014;170:116–23.
https://doi.org/10.1016/j.livsci.2014.10.004
19. Pauly C, Spring P, O’Doherty JV, Kragten SA, Bee G. Performances, meat quality and boar taint of castrates and entire male pigs fed a standard and a raw potato starch-enriched diet. Animal 2008;2:1707–15.
https://doi.org/10.1017/S1751731108002826
22. Bindelle J, Leterme P, Buldgen A. Nutritional and environmental consequences of dietary fibre in pig nutrition: a review. Biotechnol Agron Soc Environ 2008;12:69–80.
24. Hedemann MS, Bach Knudsen KEB. Resistant starch for weaning pigs: effect on concentration of short chain fatty acids in digesta and intestinal morphology. Livest Sci 2007;108:175–7.
https://doi.org/10.1016/j.livsci.2007.01.045
26. Zhou L, Fang L, Sun Y, Su Y, Zhu W. Effects of a diet high in resistant starch on fermentation end-products of protein and mucin secretion in the colons of pigs. Starch-Stärke 2017;69:1600032.
https://doi.org/10.1002/star.201600032
28. Kim HB, Isaacson RE. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol 2015;177:242–51.
https://doi.org/10.1016/j.vetmic.2015.03.014
29. Han GG, Lee JY, Jin GD, et al. Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl Microbiol Biotechnol 2017;101:5903–11.
https://doi.org/10.1007/s00253-017-8304-7
30. Kemp JA, Regis de Paiva B, Fragoso Dos Santos H, et al. The impact of enriched resistant starch type-2 cookies on the gut microbiome in hemodialysis patients: a randomized controlled trial. Mol Nutr Food Res 2021;65:2100374.
https://doi.org/10.1002/mnfr.202100374
32. Kraatz M, Wallace RJ, Svensson L. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int J Syst Evol Microbiol 2011;61:795–803.
https://doi.org/10.1099/ijs.0.022954-0
33. Li X, Jensen RL, Højberg O, Canibe N, Jensen BB. Olsenella scatoligenes sp. Nov., a 3-methylindole-(skatole) and 4-methylphenol-(p-cresol) producing bacterium isolated from pig faeces. Int J Syst Evol Microbiol 2015;65:1227–33.
https://doi.org/10.1099/ijs.0.000083
34. Long SF, Xu YT, Pan L, et al. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim Feed Sci Technol 2018;235:23–32.
https://doi.org/10.1016/j.anifeedsci.2017.08.018
35. Hasan S, Saha S, Junnikkala S, Orro T, Peltoniemi O, Oliviero C. Late gestation diet supplementation of resin acid-enriched composition increases sow colostrum immunoglobulin G content, piglet colostrum intake and improve sow gut microbiota. Animal 2018;13:1599–606.
https://doi.org/10.1017/S1751731118003518
38. Morotomi M, Nagai F, Sakon H, Tanaka R. Dialister succinatiphilus sp. Nov. and Barnesiella intestinihominis sp. Nov., isolated from human faeces. Int J Syst Evol Microbiol 2008;58:2716–20.
https://doi.org/10.1099/ijs.0.2008/000810-0
43. Hu X, Lin B, Luo M, Zheng X, Zhang H. The isolation, identification, physiological property of pig-isolate Clostridium butyricum ly33 using lactic acid and its effects on intestinal function of weaned piglets. Ital J Anim Sci 2019;18:910–21.
https://doi.org/10.1080/1828051X.2019.1603089
45. Zhang J, Chen X, Liu P, et al. Dietary Clostridium butyricum induces a phased shift in fecal microbiota structure and increases the acetic acid-producing bacteria in a weaned piglet model. J Agric Food Chem 2018;66:5157–66.
https://doi.org/10.1021/acs.jafc.8b01253
46. Jin M, Kalainy S, Baskota N, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int 2019;39:1437–47.
https://doi.org/10.1111/liv.14106
47. Togo AH, Diop A, Bittar F, et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie van Leeuwenhoek 2018;111:2107–28.
https://doi.org/10.1007/s10482-018-1104-y
50. Ben Aissa FB, Postec A, Erauso G, et al. Vallitalea pronyensis sp. Nov., isolated from a marine alkaline hydrothermal chimney. Int J Syst Evol Microbiol 2014;64:1160–5.
https://doi.org/10.1099/ijs.0.055756-0
51. Haas KN, Blanchard JL. Kineothrix alysoides, gen. Nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. Int J Syst Evol Microbiol 2017;67:402–10.
https://doi.org/10.1099/ijsem.0.001643
53. Morotomi M, Nagai F, Sakon H, Tanaka R. Paraprevotella clara gen. Nov., sp. Nov. and Paraprevotella xylaniphila sp. Nov., members of the family ‘Prevotellaceae’ isolated from human faeces. Int J Syst Evol Microbiol 2009;59:1895–900.
https://doi.org/10.1099/ijs.0.008169-0
54. Schouw A, Leiknes Eide TL, Stokke R, Pedersen RB, Steen IH, Bødtker G. Abyssivirga alkaniphila gen. Nov., sp. Nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 2016;66:1724–34.
https://doi.org/10.1099/ijsem.0.000934