3. Meneguz M, Schiavone A, Gai F, et al. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J Sci Food Agric 2018;98:5776–84.
https://doi.org/10.1002/jsfa.9127
4. FAO. The State of Food and Agriculture: Livestock in the Balance. Rome, Italy: Food and Agriculture Organization of the United Nations; 2009.
7. Miech P, Lindberg JE, Berggren Å, Chhay T, Jansson A. Apparent faecal digestibility and nitrogen retention in piglets fed whole and peeled Cambodian field cricket meal. J Insect Food Feed 2017;3:279–88.
https://doi.org/10.3920/JIFF2017.0019
9. Schiavone A, Dabbou S, De Marco M, et al. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 2018;12:2032–9.
https://doi.org/10.1017/S1751731117003743
10. Secci G, Moniello G, Gasco L, Bovera F, Parisi G. Barbary partridge meat quality as affected by Hermetia illucens and Tenebrio molitor larva meals in feeds. Food Res Int 2018;112:291–8.
https://doi.org/10.1016/j.foodres.2018.06.045
12. Onsongo VOI, Osuga IM, Gachuiri CK, et al. Insects for income generation through animal feed: effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J Econ Entomol 2018;111:1966–73.
https://doi.org/10.1093/jee/toy118
13. Sealey WM, Gaylord TG, Barrows FT, et al. Sensory Analysis of Rainbow Trout, Oncorhynchus mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia illucens. J World Aquac Soc 2011;42:34–45.
https://doi.org/10.1111/j.1749-7345.2010.00441.x
19. Ojewola GS, Eburuaja AS, Okoye FC, Lawal AS, Akinmutimi AH. Effect of inclusion of grasshopper meal on performance nutrient utilization and organ of broiler chicken. J Sustain Agric Environ 2003;5:19–25.
21. Ghosh S, Parimalendu H, Dipak KM. Evaluation of nutrient quality of a short horned grasshopper Oxya hyla hyla Serville (Orthoptera: Acrididae) in search of new protein source. J Entomol Zool Stud 2016;4:193–7.
22. Ssepuuya G, Mukisa IM, Nakimbugwe D. Nutritional composition, quality, and shelf stability of processed Ruspolia nitidula (edible grasshoppers). Food Sci Nutr 2017;5:103–12.
https://doi.org/10.1002/fsn3.369
23. Straub P, Tanga CM, Osuga I, Windisch W, Subramanian S. Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Anim Feed Sci Technol 2019;255:114215.
https://doi.org/10.1016/j.anifeedsci.2019.114215
25. Kinyuru JN, Kenji GM, Njoroge SM, Ayieko M. Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioproc Tech 2010;3:778–82.
https://doi.org/10.1007/s11947-009-0264-1
26. Opstvedt J, Nygard E, Samuelsen TA, Venturini G, Luzzana U, Mundheim H. Effect on protein digestibility of different processing conditions in the production of fish mealand fish feed. J Sci Food Agric 2003;83:775–82.
https://doi.org/10.1002/jsfa.1396
27. Nafisa ME, Hassan SY, Hamed AB, Hassan MM, Elfadil EB. Nutritional evaluation and physiochemical properties of boiled and fried tree locust. Pakistan J Nutr 2008;7:325–9.
https://doi.org/10.3923/pjn.2008.325.329
31. Falade KO, Omojola BS. Effect of Processing Methods on physical, chemical, rheological, and sensory properties of Okra (Abelmoschus esculentus). Food Bioproc Technol 2010;3:387–94.
https://doi.org/10.1007/s11947-008-0126-2
33. Arango Gutierrez GP, Vergara Ruiz RA, Mejia Velez H. Compositional microbiological and protein digestibility analysis of larval meal of Hermetia illucens (Diptera:Stratiomyidae) at Angelopolis-Antioquia Colombia. Rev Fac Nac Agron Medellin 2004;57:2491–9.
35. Cullere M, Tasoniero G, Giaccone V, et al. Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016;10:1923–30.
https://doi.org/10.1017/S1751731116001270
36. De Marco M, Martínez S, Hernandez F, et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol 2015;209:211–8.
https://doi.org/10.1016/j.anifeedsci.2015.08.006
37. Jayanegara A, Yantina N, Novandri B, Laconi EB, Nahrowi N, Ridla M. Evaluation of some insects as potential feed ingredients for ruminants: chemical composition, in vitro rumen fermentation and methane emissions. J Indones Trop Anim Agric 2017;42:247–54.
https://doi.org/10.14710/jitaa.42.4.247-254
39. Jayanegara A, Dewi SP, Ridla M. Nutrient Content, Protein Fractionation, and Utilization of Some Beans as Potential Alternatives to Soybean for Ruminant Feeding. Med Pet 2016;39:195–202.
https://doi.org/10.5398/medpet.2016.39.3.195
40. Jayanegara AG, Goel HP, Makkar S, Becker K. Divergence between purified hydrolysable and condensed tannin effects on methane emission rumen fermentation and microbial population in vitro. Anim Feed Sci Technol 2015;209:60–8.
https://doi.org/10.1016/j.anifeedsci.2015.08.002
42. Campbell M, Ortuño J, Stratakos AC, et al. Impact of thermal and high-pressure treatments on the microbiological quality and in vitro digestibility of black soldier fly (Hermetia illucens) Larvae. Animal 2020;10:682.
https://doi.org/10.3390/ani10040682
43. Moreki JC, Tiroesele B, Chiripasi SC. Prospects of utilizing insects as alternative sources of protein in poultry diets in Botswana. J Anim Sci Adv 2012;2:649–58.
44. Hwangbo J, Hong EC, Jang A, et al. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J Environ Biol 2009;30:609–14.
47. Pieterse E, Pretorius Q. Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical- and broiler-based biological assays. Anim Prod Sci 2013;54:347–55.
https://doi.org/10.1071/AN12370
49. Bovera F, Loponte R, Marono S, et al. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J Anim Sci 2016;94:639–47.
https://doi.org/10.2527/jas.2015-9201
52. Shah AA, Liu Z, Qian C, Wu J, Sultana N, Zhong X. Potential effect of the microbial fermented feed utilization on physicochemical traits, antioxidant enzyme and trace mineral analysis in rabbit meat. J Anim Physiol Anim Nutr 2020;104:767–75.
https://doi.org/10.1111/jpn.13252
54. Gugołek A, Strychalski J, Juśkiewicz J, Żary-Sikorska E. The effect of fish and mealworm larvae meals as alternative dietary protein sources on nutrient digestibility and gastrointestinal function in Chinchilla lanigera. Exp Anim 2020;69:70–9.
https://doi.org/10.1538/expanim.19-0072
55. Marono S, Piccolo G, Loponte R, et al. In vitro crude protein digestibility of tenebrio molitor and hermetia illucens insect meals and its correlation with chemical composition traits. Ital J Anim Sci 2015;14:3389.
https://doi.org/10.4081/ijas.2015.3889
56. Song YS, Kim MW, Moon C, et al. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol Res 2018;48:227–33.
https://doi.org/10.1111/1748-5967.12304
58. Yoo JS, Cho KH, Hong JS, et al. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas J Anim Sci 2019;32:387–94.
https://doi.org/10.5713/ajas.18.0647
59. Schiavone A, De Marco M, Rotolo L, et al. Nutrient digestibility of Hermetia illucens and Tenebrio molitor meal in broiler chickens. In : Abstract book Conference “Insects to Feed the World”; 2014 May 14–17; Wageningen, The Netherlands. 84
https://iris.unito.it/handle/2318/158360#.YQS1AUBRXIU
62. Veldkamp T, Bosch G. Insects: a protein-rich feed ingredient in pig and poultry diets. Anim Front 2015;5:45–50.
63. Veldkamp T, Van Duinkerken G, van Huis A, et al. Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study Insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: eenhaalbaarheidsstudie (No 638). Wageningen, The Nederlands: Wageningen University Research Livestock Research; 2012.
64. Malla N, Opeyemi AJ. Prospects of insects as alternative protein source: broiler chicken and growing pigs. Report in Sustainable Animal Nutrition and Feeding. Aarhus, Denmark: Department of Animal Science, Aarhus University; 2018. p. 26
67. Madau FA, Arru B, Furesi R, Pulina P. Insect farming for feed and food production from a circular business model perspective. Sustainability 2020;12:5418.
https://doi.org/10.3390/su12135418
71. Mlcek J, Rop O, Borkovcova M, Bednarova MA. A Comprehensive look at the possibilities of edible insects as food in Europe a review. Pol J Food Nutr Sci 2014;64:147–57.
https://doi.org/10.2478/v10222-012-0099-8
74. Derrien C, Boccuni A. Current status of the insect producing industry in Europe. Halloran A, Flore R, Vantomme P, Roos N, editorsEdible insects in sustainable food systems. Berlin/Heidelberg Germany: Springer; 2018. p. 471–9.
https://doi.org/10.1007/978-3-319-74011-9_30
75. Diener S, Solano NMS, Gutiérrez FR, Zurbrügg C, Tockner K. Biological treatment of municipal organic waste using black soldier fly larvae. Waste Biomass Valorization 2011;2:357–63.
https://doi.org/10.1007/s12649-011-9079-1
77. Gahukar RT. Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. Dossey AT, Morales-Ramos JA, Rojas MG, editorsInsects as sustainable food ingredients. Academic Press; 2016. p. 85–111.
https://doi.org/10.1016/B978-0-12-802856-8.00004-1
78. Arru B, Furesi R, Gasco L, Madau FA, Pulina P. The introduction of insect meal into fish diet: the first economic analysis on European sea bass farming. Sustainability 2019;11:1697.
https://doi.org/10.3390/su11061697
81. Hanboonsong Y, Jamjanya T, Durst PB. Six-legged livestock: edible insect farming, collecting and marketing in Thailand. Food and Agriculture Organization of the United Nations; 2013. Bangkok: 1–69.
http://www.fao.org/3/i3246e/i3246e.pdf
82. IPIFF (International Platform Insects for Food & Feed). EU Legislation. [cited 2017 Sept 8]. Available from:
www.ipiff.org/our-positions
83. Halloran A, Vantomme P, Hanboonsong Y, Ekesi S. Regulating edible insects: the challenge of addressing food security, nature conservation, and the erosion of traditional food culture. Food Secur 2015;7:739–46.
https://doi.org/10.1007/s12571-015-0463-8
84. Preteseille N, Deguerry A, Reverberi M, Weigel T. Insects in Thailand: national leadership and regional development, from standards to regulations through association. Halloran A, Flore R, Vantomme P, Roos N, editorsEdible insects in sustainable food systems. Berlin/Heidelberg Germany: Springer; 2018. p. 435–42.
https://doi.org/10.1007/978-3-319-74011-9_27