1. Wei HW, Hsieh TL, Chang SK, Chiu WZ, Huang YC, Lin MF. Apportioning protein requirements for maintenance v. growth for blue-breasted quail (Excalfactoria chinensis) from 7 to 21 days of age. Animal 2011;5:1515–20.
https://doi.org/10.1017/S1751731111000590
2. Renema RA, Robinson FE, Newcombe M, McKay RI. Effects of body weight and feed allocation during sexual maturation in broiler breeder hens. 1. Growth and carcass characteristics. Poult Sci 1999;78:619–28.
https://doi.org/10.1093/ps/78.5.619
3. Fontana EA, Weaver WD, Van Krey HP. Effects of various feeding regimens on reproduction in broiler-breeder males. Poult Sci 1990;69:209–16.
https://doi.org/10.3382/ps.0690209
4. NRC National Research Council. Nutrient requirements of poultry: ninth revised edition. 9th edWashington, DC, USA: National Academies Press; 1994.
5. Rostagno HS, Albino LFT, Donzele JL, et al. Brazilian tables for poultry and swine: Composition of feedstuffs and nutritional requirements. 3 edViçosa, MG, USA: Universidade Federal de Viçosa; 2011.
6. Bongalhardo DC. Production and preservation of rooster semen. Rev Bras Reprod Anim 2013;37:131–5.
7. Grieser DdO, Marcato SM, Furlan AC, et al. Estimation of growth parameters of body weight and body nutrient deposition in males and females of meat-and laying-type quail using the Gompertz model. Braz J Anim Sci 2018;47:e20170083.
https://doi.org/10.1590/rbz4720170083
8. Albino LFT, Barreto SLT. Quail breeding for egg and meat production. 1 edViçosa MG, editorBrazil: Aprenda Fácil; 2003.
10. AOAC Official methods of analysis. 18th edGaithersburg, MD, USA: Official Method: AOAC International; 2005.
13. Suvarna KS, Layton C, Bancroft JD. Bancroft’s theory and practice of histological techniques e-book. Amsterdam, Netherlands: Elsevier, Health Sciences; 2019.
15. Oznurlu Y, Sur E, Ozaydin T, Celik I, Uluisik D. Histological and histochemical evaluations on the effects of high incubation temperature on the embryonic development of tibial growth plate in broiler chickens. Microsc Res Tech 2016;79:106–10.
https://doi.org/10.1002/jemt.22611
16. Ben-Ezra N, Burness G. Constant and cycling incubation temperatures have long-term effects on the morphology and metabolic rate of Japanese Quail. Physiol Biochem Zool 2017;90:96–105.
https://doi.org/10.1086/688383
17. Bhagat RP, Zade SB, Charde PN. Study on eggs of Japanese quail (Coturnix coturnix japonica) during incubation in the controlled laboratory conditions. J Appl Nat Sci 2012;4:85–6.
https://doi.org/10.31018/jans.v4i1.228
18. Biswas A, Mohan J, Sastry KVH. Effect of dietary supplementation of vitamin E on production performance and some biochemical characteristics of cloacal foam in male Japanese quail. Anim Reprod Sci 2013;140:92–6.
https://doi.org/10.1016/j.anireprosci.2013.05.008
21. Biswas A, Ranganatha OS, Mohan J. The effect of different foam concentrations on sperm motility in Japanese quail. Vet Med Int. 2010. 2010:Article ID 564921.
https://doi.org/10.4061/2010/564921
22. Wen ZG, Du YK, Xie M, Li XM, Wang JD, Yang PL. Effects of low-protein diets on growth performance and carcass yields of growing French meat quails (France coturnix coturnix). Poult Sci 2017;96:1364–9.
https://doi.org/10.3382/ps/pew321
23. Rostagno HS, Albino LFT, Donzele JL, et al. Brazilian tables for poultry and swine: Composition of feedstuffs and nutritional requirements. Viçosa, MG, Brazil: UFV; 2017.
24. Alves MG, Rato L, Carvalho RA, Moreira PI, Socorro S, Oliveira PF. Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci 2013;70:777–93.
https://doi.org/10.1007/s00018-012-1079-1
26. Sarabia Fragoso J, Pizarro Díaz M, Abad Moreno JC, Casanovas Infesta P, Rodriguez-Bertos A, Barger K. Relationships between fertility and some parameters in male broiler breeders (body and testicular weight, histology and immunohistochemistry of testes, spermatogenesis and hormonal levels). Reprod Domest Anim 2013;48:345–52.
https://doi.org/10.1111/j.1439-0531.2012.02161.x
27. Perry TW, Cullison AE, Lowrey RS. Feeds and feeding. 6 edUpper Saddle River, NJ, USA: Pearson Education Inc; 2002.
28. Karaalp M. Effects of decreases in the three most limiting amino acids of low protein diets at two different feeding periods in Japanese quails. Br Poult Sci 2009;50:606–12.
https://doi.org/10.1080/00071660903260748
29. Alagawany M, El-Hack MEA, Laudadio V, Tufarelli V. Effect of low-protein diets with crystalline amino acid supplementation on egg production, blood parameters and nitrogen balance in laying Japanese quails. Avian Biol Res 2014;7:235–43.
https://doi.org/10.3184/175815514X14152945166603
30. Jariyahatthakij P, Chomtee B, Poeikhampha T, Loongyai W, Bunchasak C. Methionine supplementation of low-protein diet and subsequent feeding of low-energy diet on the performance and blood chemical profile of broiler chickens. Anim Prod Sci 2017;58:878–85.
https://doi.org/10.1071/AN16258