Application of AutoFom III equipment for prediction of primal and commercial cut weight of Korean pig carcasses
Jung Seok Choi (Choi JS), Ki Mun Kwon (Kwon KM), Young Kyu Lee (Lee YK), Jang Uk Joeng (Joeng JU), Kyung Ok Lee (Lee KO), Sang Keun Jin (Jin SK), Yang Il Choi (Choi YI), Jae Joon Lee (Lee JJ)
Asian-Australas J Anim Sci. 2018;31(10):1670-1676.   Published online 2018 Jul 26     DOI:
Citations to this article as recorded by Crossref logo
Challenges and future perspectives for the European grading of pig carcasses – A quality view
Marjeta Čandek-Potokar, Bénédicte Lebret, Marina Gispert, Maria Font-i-Furnols
Meat Science.2024; 208: 109390.     CrossRef
Prediction of tail biting in pigs using partial least squares regression and artificial neural networks
Veronika Drexl, Imme Dittrich, Thore Wilder, Sophie Diers, Heiko Janssen, Joachim Krieter
Computers and Electronics in Agriculture.2024; 216: 108477.     CrossRef
Alleviating Heat Stress in Fattening Pigs: Low-Intensity Showers in Critical Hours Alter Body External Temperature, Feeding Pattern, Carcass Composition, and Meat Quality Characteristics
José Segura, Luis Calvo, Rosa Escudero, Ana Isabel Rodríguez, Álvaro Olivares, Beatriz Jiménez-Gómez, Clemente José López-Bote
Animals.2024; 14(11): 1661.     CrossRef
Breeding potential for pork belly to the novel economic trait
Seung-Hoon Lee, Jun-Mo Kim
Journal of Animal Science and Technology.2023; 65(1): 1.     CrossRef
Comparison of an advanced automated ultrasonic scanner (AutoFom III) and a handheld optical probe (Destron PG-100) to determine lean yield in pork carcasses
Justice B Dorleku, Lisa Wormsbecher, Mette Christensen, Cheryl P Campbell, Ira B Mandell, Benjamin M Bohrer
Journal of Animal Science.2023;[Epub]     CrossRef
Relationship of pig carcass grade with the amount of pork belly estimated with AutoFom III
Eunyoug Ko, Yunhwan Park, Kwangwook Park, Changhyun Woo, Sanghun Park, Yun-a Kim, Gyutae Park, Sehyuk Oh, Jaeyoung Kim, Jungseok Choi, D. Y. Wang
Animal Production Science.2023; 63(6): 604.     CrossRef
Developing an alternative classification method for predicting ham composition using linear measurements from the cross-sectional ham surface
X. Wei, B. Bohrer, B. Uttaro, M. Juárez
Meat Science.2023; 204: 109237.     CrossRef
Verification of Reproducibility of VCS2000 Equipment for Mechanical Measurement of Korean Landrace×Yorkshire (F1), F1×Duroc (LYD) Pig Carcasses
Yunhwan Park, Kwantae Kim, Jaeyoung Kim, Jongtae Seo, Jungseok Choi
Food Science of Animal Resources.2023; 43(4): 553.     CrossRef
Prediction of body composition in growing-finishing pigs using ultrasound based back-fat depth approach and machine learning algorithms
Jayanta Kumar Basak, Bhola Paudel, Nibas Chandra Deb, Dae Yeong Kang, Byeong Eun Moon, Shihab Ahmad Shahriar, Hyeon Tae Kim
Computers and Electronics in Agriculture.2023; 213: 108269.     CrossRef
Correlation between the Korean pork grade system and the amount of pork primal cut estimated with AutoFom III
Yunhwan Park, Eunyoung Ko, Kwangwook Park, Changhyun Woo, Jaeyoung Kim, Sanghun Lee, Sanghun Park, Yun-a Kim, Gyutae Park, Jungseok Choi
Journal of Animal Science and Technology.2022; 64(1): 135.     CrossRef
Relationship between porcine carcass grades and estimated traits based on conventional and non-destructive inspection methods
Seok-Won Lim, Doyon Hwang, Sangwook Kim, Jun-Mo Kim
Journal of Animal Science and Technology.2022; 64(1): 155.     CrossRef
A Comparative Study of Machine Learning Methods for Predicting Live Weight of Duroc, Landrace, and Yorkshire Pigs
Alexey Ruchay, Svetlana Gritsenko, Evgenia Ermolova, Alexander Bochkarev, Sergey Ermolov, Hao Guo, Andrea Pezzuolo
Animals.2022; 12(9): 1152.     CrossRef
Prediction of Carcass Composition and Meat and Fat Quality Using Sensing Technologies: A Review
Patricia L. A. Leighton, Jose Segura, Stephanie Lam, Marcel Marcoux, Xinyi Wei, Oscar Lopez-Campos, Philip Soladoye, Mike E. R. Dugan, Manuel Juarez, Nuria Prieto
Meat and Muscle Biology.2022;[Epub]     CrossRef
Objective carcass measurement technologies: Latest developments and future trends
Gonzalo Delgado-Pando, Paul Allen, Declan J. Troy, Ciara K. McDonnell
Trends in Food Science & Technology.2021; 111: 771.     CrossRef
Weight prediction of pork cuts and tissue composition using spectral graph wavelet
Majid Masoumi, Marcel Marcoux, Laurence Maignel, Candido Pomar
Journal of Food Engineering.2021; 299: 110501.     CrossRef
Predicting body compositions of live finishing pigs based on bioelectrical impedance analysis
Ji Seon An, Ji Hwan Lee, Min Ho Song, Won Yun, Han Jin Oh, Yong Ju Kim, Jun Soeng Lee, Hyeun Bum Kim, Jin Ho Cho
Journal of Animal Science and Technology.2021; 63(2): 332.     CrossRef
Ultrasound applications in poultry meat processing: A systematic review
Asaad R. Al‐Hilphy, Ammar B. Al‐Temimi, Hassan Hadi Mehdi Al Rubaiy, Uttpal Anand, Gonzalo Delgado‐Pando, Naoufal Lakhssassi
Journal of Food Science.2020; 85(5): 1386.     CrossRef
Modeling the deformation of fresh porcine bellies: A quantitative comparison of different constitutive formulations
S. Rahmani, T. Andriollo, M.R. Sonne, J.H. Hattel
Mechanics of Materials.2020; 150: 103597.     CrossRef
Characteristics of Pig Carcass and Primal Cuts Measured by the Autofom Ⅲ Depend on Seasonal Classification
Jungseok Choi, Kimun Kwon, Youngkyu Lee, Eunyoung Ko, Yongsun Kim, Yangil Choi
Food Science of Animal Resources.2019; 39(2): 332.     CrossRef