![]() |
Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation
Yasuo Kobayashi (Kobayashi Y)
Asian-Australas J Anim Sci. 2010;23(3):410-416. Published online 2010 Feb 22 DOI: https://doi.org/10.5713/ajas.2010.r.01
|
Citations to this article as recorded by
Could propionate formation be used to reduce enteric methane emission in ruminants?
Kun Wang, Benhai Xiong, Xin Zhao
Science of The Total Environment.2023; 855: 158867. CrossRef Effect of supplementing sulphate-reducing bacteria along with sulphur on growth performance, nutrient utilization and methane emission in goats
Sandeep Uniyal, Lal Chandra Chaudhary, Anju Kala, Neeta Agarwal, Vishwa Bandhu Chaturvedi
Tropical Animal Health and Production.2023;[Epub] CrossRef Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues
Bożena Króliczewska, Ewa Pecka-Kiełb, Jolanta Bujok
Agriculture.2023; 13(3): 602. CrossRef Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals
Tenzin Tseten, Rey Anthony Sanjorjo, Moonhyuk Kwon, Seon-Won Kim
Journal of Microbiology and Biotechnology.2022; 32(3): 269. CrossRef New temperate seaweed targets for mitigation of ruminant methane emissions: an in vitro assessment
Alisa A. Mihaila, Christopher R. K. Glasson, Rebecca Lawton, Stefan Muetzel, German Molano, Marie Magnusson
Applied Phycology.2022; 3(1): 274. CrossRef Effects of ruminal protozoa on methane emissions in ruminants—A meta-analysis
X. Dai, K.F. Kalscheur, P. Huhtanen, A.P. Faciola
Journal of Dairy Science.2022; 105(9): 7482. CrossRef Red seaweed extracts reduce methane production by altering rumen fermentation and microbial composition in vitro
Youyoung Choi, Shin Ja Lee, Hyun Sang Kim, Jun Sik Eom, Seong Uk Jo, Le Luo Guan, Tansol Park, Jakyeom Seo, Yookyung Lee, Dongryeoul Bae, Sung Sill Lee
Frontiers in Veterinary Science.2022;[Epub] CrossRef Ruminant contribution to enteric methane emissions and possible mitigation strategies in the Southern Africa Development Community region
Mompoloki Seketeme, Othusitse R. Madibela, Thabo Khumoetsile, Innocent Rugoho
Mitigation and Adaptation Strategies for Global Change.2022;[Epub] CrossRef Fermentación ruminal in vitro y producción de AGVS, metano y bióxido de carbono con la inclusión de extractos de plantas del semidesierto zacatecano.
Rómulo Bañuelos-Valenzuela, Lucía Delgadillo-Ruiz
Archivos Latinoamericanos de Producción Animal.2022; 30(Supl. 1): 1. CrossRef The concentration of enteric methane from cattle fed different fibre level
N H Krishna, Y N Anggraeny, Mariyono, D Pamungkas
IOP Conference Series: Earth and Environmental Science.2021; 648(1): 012129. CrossRef Catfish oil supplementation in Bali cattle diet: Effects on rumen fermentation parameters, carboxymethylcellulase and protease activity in vitro
D N Cahyo, L M Yusiati, A Kurniawati, C Hanim, Muhlisin
IOP Conference Series: Earth and Environmental Science.2021; 782(2): 022082. CrossRef The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: Challenges and opportunities
Byeng R. Min, David Parker, David Brauer, Heidi Waldrip, Catherine Lockard, Kristin Hales, Alexia Akbay, Simona Augyte
Animal Nutrition.2021; 7(4): 1371. CrossRef Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance
Youyoung Choi, Shin Ja Lee, Hyun Sang Kim, Jun Sik Eom, Seong Uk Jo, Le Luo Guan, Jakyeom Seo, Hanbeen Kim, Sang Suk Lee, Sung Sill Lee
Scientific Reports.2021;[Epub] CrossRef Methane production and estimation from livestock husbandry: A mechanistic understanding and emerging mitigation options
Shilpi Kumari, R.K. Fagodiya, Moonmoon Hiloidhari, R.P. Dahiya, Amit Kumar
Science of The Total Environment.2020; 709: 136135. CrossRef Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review
Victoria Baca-González, Patricia Asensio-Calavia, Sergio González-Acosta, Jose Manuel Pérez de la Lastra, Antonio Morales de la Nuez
Vaccines.2020; 8(3): 460. CrossRef Systematic analysis of occurrence, density and ecological risks of 45 veterinary antibiotics: Focused on family livestock farms in Erhai Lake basin, Yunnan, China
Suli Zhi, Shizhou Shen, Jing Zhou, Gongyao Ding, Keqiang Zhang
Environmental Pollution.2020; 267: 115539. CrossRef Growth-promoting effect of water-washed neem (Azadirachta indica A. Juss) fruit inclusion in West African dwarf rams
Akaninyene A. Jack, Michael K. Adewumi, Moyosore J. Adegbeye, Daniel E. Ekanem, Abdelfattah Z. M. Salem, Tolulope O. Faniyi
Tropical Animal Health and Production.2020; 52(6): 3467. CrossRef New challenges for efficient usage of Sargassum fusiforme for ruminant production
You Young Choi, Shin Ja Lee, Ye Jun Lee, Hyun Sang Kim, Jun Sik Eom, Sam Churl Kim, Eun Tae Kim, Sung Sill Lee
Scientific Reports.2020;[Epub] CrossRef Bovicins: The Bacteriocins of Streptococci and Their Potential in Methane Mitigation
Anita Kumari Garsa, Prasanta Kumar Choudhury, Anil Kumar Puniya, Tejpal Dhewa, Ravinder Kumar Malik, Sudhir Kumar Tomar
Probiotics and Antimicrobial Proteins.2019; 11(4): 1403. CrossRef Evaluation of the overall impact of antibiotics growth promoters on broiler health and productivity during the medication and withdrawal period
H Hamid, L H Zhao, G Y Ma, W X Li, H Q Shi, J Y Zhang, C Ji, Q G Ma
Poultry Science.2019; 98(9): 3685. CrossRef Effects of a blend of garlic oil, nitrate and fumarate onin vitroruminal fermentation and microbial population
D. T. Mbiriri, S. Cho, C. I. Mamvura, N. J. Choi
Journal of Animal Physiology and Animal Nutrition.2017; 101(4): 713. CrossRef Ginkgo fruit extract as an additive to modify rumen microbiota and fermentation and to mitigate methane production
S. Oh, R. Shintani, S. Koike, Y. Kobayashi
Journal of Dairy Science.2017; 100(3): 1923. CrossRef Evaluation of three medicinal plants for methane production potential, fiber digestion and rumen fermentation in vitro
Samir Medjekal, Raúl Bodas, Hacène Bousseboua, Secundino López
Energy Procedia.2017; 119: 632. CrossRef Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation
Yasuo Kobayashi, Seongjin Oh, Htun Myint, Satoshi Koike
Journal of Animal Science and Biotechnology.2016;[Epub] CrossRef Effect of monensin withdrawal on rumen fermentation, methanogenesis and microbial populations in cattle
Arfan Abrar, Takamitsu Tsukahara, Makoto Kondo, Tomomi Ban-Tokuda, Wang Chao, Hiroki Matsui
Animal Science Journal.2015; : n/a. CrossRef Synergistic effect of methane emission through ruminant production
O Ososanya T, O Faniyi T
African Journal of Agricultural Research.2015; 10(25): 2501. CrossRef Rumen fermentation and acetogen population changes in response to an exogenous acetogen TWA4 strain and Saccharomyces cerevisiae fermentation product
Chun-lei Yang, Le-luo Guan, Jian-xin Liu, Jia-kun Wang
Journal of Zhejiang University-SCIENCE B.2015; 16(8): 709. CrossRef Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay
H.M. Arelovich, M.I. Amela, M.F. Martínez, R.D. Bravo, M.B. Torrea
Small Ruminant Research.2014; 121(2-3): 175. CrossRef Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions
W.Y. Kim, M.D. Hanigan, S.J. Lee, S.M. Lee, D.H. Kim, J.H. Hyun, J.M. Yeo, S.S. Lee
Journal of Dairy Science.2014; 97(11): 7065. CrossRef A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep
Amlan Kumar Patra
Livestock Science.2014; 162: 97. CrossRef Effect of cashew nut shell liquid on metabolic hydrogen flow on bovine rumen fermentation
Makoto Mitsumori, Osamu Enishi, Takumi Shinkai, Koji Higuchi, Yosuke Kobayashi, Akio Takenaka, Kyo Nagashima, Masami Mochizuki, Yasuo Kobayashi
Animal Science Journal.2014; 85(3): 227. CrossRef The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation
J. Haisan, Y. Sun, L.L. Guan, K.A. Beauchemin, A. Iwaasa, S. Duval, D.R. Barreda, M. Oba
Journal of Dairy Science.2014; 97(5): 3110. CrossRef Effect of Tropical Algae as Additives on Rumen <i>in Vitro</i> Gas Production and Fermentation Characteristics
Baptiste Dubois, Nigel W. Tomkins, Robert D. Kinley, Mei Bai, Scott Seymour, Nicholas A. Paul, Rocky de Nys
American Journal of Plant Sciences.2013; 04(12): 34. CrossRef Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor
Pillanatham Civalingam Sakthivel, Devki Nandan Kamra, Neeta Agarwal, Lal Chandra Chaudhary
Asian-Australasian Journal of Animal Sciences.2012; 25(6): 812. CrossRef Effect of dietary monensin inclusion on performance, nutrient utilisation, rumen volatile fatty acid concentration and blood status of West African dwarf bucks fed with basal diets of forages
Ronke Yemisi Aderinboye, Chryss Friday Ijeoma Onwuka, Oluwasanmi Moses Arigbede, Oluseyi Olutosin Oduguwa, Ayobami Bukola Joseph Aina
Tropical Animal Health and Production.2012; 44(5): 1079. CrossRef Exploration of natural materials as a condidate feed additive to mitigate methane emission from enteric fermentation of domestic animals
Yasuo Kobayashi
Journal of Pesticide Science.2011; 36(1): 124. CrossRef A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen
Amlan K. Patra, Jyotisna Saxena
Phytochemistry.2010; 71(11-12): 1198. CrossRef Influence of the Composition of the Cellulolytic Flora on the Development of Hydrogenotrophic Microorganisms, Hydrogen Utilization, and Methane Production in the Rumens of Gnotobiotically Reared Lambs
Frédérique Chaucheyras-Durand, Sébastien Masséglia, Gérard Fonty, Evelyne Forano
Applied and Environmental Microbiology.2010; 76(24): 7931. CrossRef
|