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Ruminal ciliates as modulators of the rumen microbiome
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Abstract: Ruminal ciliates are a fundamental constituent within the rumen microbiome of 
ruminant animals. The complex interactions between ruminal ciliates and other microbial 
guilds within the rumen ecosystems are of paramount importance for facilitating the digestion 
and fermentation processes of ingested feed components. This review underscores the 
significance of ruminal ciliates by exploring their impact on key factors, such as methane 
production, nitrogen utilization efficiency, feed efficiency, and other animal performance 
measurements. Various methods are employed in the study of ruminal ciliates including 
culture techniques and molecular approaches. This review highlights the pressing need for 
further investigations to discern the distinct roles of various ciliate species, particularly 
relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The 
promotion of establishing robust reference databases tailored specifically to ruminal ciliates 
is encouraged, alongside the utilization of genomics and transcriptomics that can highlight 
their functional contributions to the rumen microbiome. Collectively, the progressive 
advancement in knowledge concerning ruminal ciliates and their inherent biological 
significance will be helpful in the pursuit of optimizing rumen functionality and refining 
animal production outcomes.
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INTRODUCTION

The rumen is a complex anaerobic digestive ecosystem, which is present in ruminant animals, 
and plays a critical role in the digestion and fermentation of ingested diets, including 
starch, fiber contents, etc. [1]. This anaerobic digestion depends entirely on an array of 
microbial communities, including ruminal bacteria, archaea, fungi, and ciliated protozoa 
[2]. Among these members, ruminal ciliates comprise up to 50% of the microbial biomass 
within the rumen [3,4]. Their distinct biological roles, which encompass the predation on 
fellow ruminal microbes, the removal of oxygen within the rumen, and symbiotic relation-
ships with prokaryotes—particularly hydrogenotrophic methanogens—have profound 
impacts on both ruminal functions and the overall performance of the host animals [4,5]. 
Notably, ruminal ciliates play a pivotal role in feed digestion, consistently demonstrating 
significantly higher digestibility across diverse measurements [6]. However, within the 
spectrum of the digestion processes, especially those potentially linked to global warming 
and arise from ruminant production, ruminal ciliates are recognized contributors and account 
for 9% to 37% of the ruminal methane production through direct or indirect associations 
with ruminal methanogens [7-9]. Additionally, ruminal ciliates contribute to excessive 
nitrogen recycling within the rumen, paralleling the limited nitrogen utilization efficiency 
(NUE) observed in host ruminants [10,11]. 
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 The composition of ruminal ciliates varies based on factors 
such as geographic distribution, diet, and among various 
animal species; thus, has led to a range of between 2 and 45 
identified species [12]. Baraka, 2012 observed up to 12 dis-
tinct genera per ruminant breed and provided detailed 
visual descriptions and figures of 54 identified ciliate species 
[13]. Interestingly, substrate preferences, host specificity, 
and antagonistic interactions between ciliate species create 
four fauna types: type A (characterized by the presence of 
Polyplastron and Ophryoscolex), type B (featuring Epidinium 
and Eudiplodinium), type K (involving Elytroplastron bub-
ali), and type O (consisting solely of Entodinium and 
isotrichids). These categories were proposed by Dehority 
[12] and Imai et al [14,15], although mixed populations 
have also been previously documented [16,17]. 
 A prior study delving into the core microbiota through 
partial 18S rRNA gene sequencing demonstrated that 12 
genera of ruminal ciliates account for nearly 100% relative 
abundance globally with substantial compositional variations, 
even among co-located animals [18]. Moreover, the func-
tionally diverse nature of ruminal ciliate species complicates 
interpretation, particularly within the context of ongoing 
microbiome investigations, which often depend on mor-
phology or marker genes. Moreover, the absence of a reliable 
reference database underscores the significance of unraveling 
the biological functions and metabolic contributions of in-
dividual ciliate species. Broadly, the population of ruminal 
ciliates can be delineated into starch-preferring species (e.g., 
Entodinium, [4]), lovers of simple sugars (e.g., isotrichids, 
[19]), cellulolytics (e.g., Epidinium, Ostracodinium, Eudiplo-
dinium, and Ophryoscolex, [20]), and voracious bacterivores 
(e.g., Entodinium spp. and Diplodiniinae, [21,22]). However, 
these classifications necessitate validation through genomic 
or transcriptomic exploration, given that much of the knowl-
edge surrounding ruminal ciliates stems from indirect evidence, 
such as defaunation and in vitro monocultures. Despite 
numerous endeavors aimed at comprehending the roles, 
biology, and contributions of ruminal ciliates on ruminal 
microbiome functions, notable gaps remain in both knowledge 
and technology.

Culture-based methods for investigating ruminal 
ciliates
Significant challenges remain in the study of ruminal ciliates, 
such as achieving axenic cultures of these microorganisms 
in laboratory settings, which so far has proven elusive [23-
25]. A compelling consensus has emerged that the growth of 
ruminal ciliates, even if not entirely axenic, depends on the 
presence of live microbes, particularly bacteria [26]. Conse-
quently, instead of pursuing axenic cultures, researchers have 
extensively employed monoxenic cultures, which are cul-
tures where a specific type of ruminal ciliate coexists with 

associated or free-living microbes, using in vitro conditions 
to facilitate the study of ruminal ciliates.
 The feasibility of studying individual ruminal ciliate species 
largely relies on their amenability to cultivation. The success-
ful maintenance of various entodiniomorphids in laboratory 
cultures has been reported, including for species such as 
Diploplastron affine [27], Entodinium spp. [27-31], Epidinium 
sp. [30,31], Enoploplastron triloricatum [30], Eudiplodinium 
spp. [27,32], and Ophryoscolex purkynjei [32]. A study by 
Dehority proposed the use of two basal medium composi-
tions for culturing ruminal ciliates, involving Entodinium 
and Epidinium species, which were combined with 10% (v/v) 
clarified rumen fluid [33]. Additionally, chemically defined 
culture media have been formulated for ruminal ciliates [31]. 
However, maintaining long-term isotrichids cultures, such 
as the two major genera, Isotricha and Dasytricha, has proven 
challenging when using in vitro conditions [19]. Conse-
quently, most research involving these genera employs 
monofaunated animals [11,34,35]. The intricate chemotactic 
behaviors of these sugar-loving ciliates, coupled with their 
inability to self-regulate their appetite, make closed batch 
culture systems less ideal [19,36]. Since the practical mainte-
nance of monofaunated ruminants poses difficulties, ongoing 
efforts to enhance the culturability of diverse ruminal ciliates 
remain valuable for expanding knowledge and investigating 
their responses to dietary interventions and feed additives in 
vitro.
 Initially, single-cell isolation was employed to establish 
monocultures of ruminal ciliate species [33] and to analyze 
ciliate-associated prokaryotes [16,37]. Serial dilution (or 
transfer) in a sterile medium during single-cell isolation 
serves to exclude as many free-living microbes as possible, 
thereby facilitating detailed analysis of ciliate-associated mi-
crobes. For comprehensive microbiome analysis, the utilization 
of high-throughput cell sorting methods can enhance the 
number of isolated cells, yielding more informative speci-
mens for microbial association studies.
 Ruminal ciliates exhibit a wide range of cell sizes, typically 
spanning 10 to 200 μm, based on cell length [4]. Thus, this 
size diversity has prompted ruminal microbiologists to ex-
plore ecological distinctions based on size-based ciliate 
fractions [38]. Williams and Coleman, 1992 furnished fun-
damental guidelines for size-based fractionation of individual 
or grouped ruminal ciliates, thereby offering an initial ap-
proach for isolating ciliate species of interest [4]. Recently, 
marker gene-based sequencing approaches have confirmed 
the presence of differentially abundant bacterial taxa (pri-
marily within Proteobacteria) in ciliate-associated fractions 
facilitated by both single-cell isolation [16] and size-based 
fractionations [39]. 
 In addition to the use of appropriate washing procedures, 
electron microscopy (including scanning and transmission 
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electron microscopy) supplemented by fluorescence staining 
can visually corroborate the physical associations between 
ruminal ciliates and their potential symbionts [40,41]. Thus, 
if necessary, the use of antioxidant mixtures [42] and stepwise 
freezing procedures [34] can enhance the storage of ruminal 
ciliate cultures during long-term freezing. 

Molecular-based approaches for classifying and 
enumerating ruminal ciliates (metataxonomics)
While absolute cell counts of ruminal ciliates have tradition-
ally been used to assess their contributions within experimental 
trials, the compositional analysis of these populations offers 
valuable insights into their functional diversity. Microscopic 
identification of ruminal ciliates, a technique employed for 
decades, requires expertise and references to established 
works [12,13,43,44]; thus, specific morphological differentia-
tion of individual species remains challenging.
 In parallel with the gradual replacement of quantitative 
real-time polymerase chain reaction by amplicon sequenc-
ing for bacterial and archaeal population analyses, 18S rRNA 
gene sequencing has been considered an alternative for quan-
tifying ruminal ciliates. However, due to the 18S rRNA gene 
being highly conserved among ciliate genera or species, cou-
pled with the limited availability of full-length reference 
sequences in public databases [45], the use of molecular-
based enumeration for ruminal ciliates still encounters 
limitations.

 The current classification of 18S rRNA gene sequences, 
via BLASTn against reference databases, is only accessible in 
a standard nucleotide database for ruminal ciliates classifica-
tion (accessed on 2023.08.13). BLAST matches can provide 
taxonomy information down to the species level. Nonetheless, 
short reads (e.g., 200 to 300 bp) typically yield reliable family- 
or genus-level classifications, owing to duplicated matches 
and associations with numerous unclassified ciliate sequences 
(data not presented). Silva offers high-quality ribosomal RNA 
databases, including over 2,000 reference 18S rRNA gene 
sequences from at least 15 genera of ruminal ciliates ([46], 
accessed on 2023.08.12; Table 1). However, when applying 
Silva reference databases (latest version, v138) within the 
QIIME2 environment for ciliate sequence classification, many 
short amplicon sequence variants cannot be assigned any 
genus name with default confidence scores (data not pre-
sented). Consequently, especially when dealing with short 
reads, careful interpretation of taxonomy classification is 
warranted. Furthermore, employing long-read sequencing 
with contemporary platforms that target robust phyloge-
netic markers, such as the internal transcribed spacer DNA 
or 28S rRNA gene sequences, is recommended for more 
reliable metataxonomic analysis of ruminal ciliates. 

Methane mitigation strategies in the context of ruminal 
ciliate populations
Ruminal ciliates are known to produce hydrogen through 

Table 1. Small subunit rRNA gene sequences from ruminal ciliates, deposited on Silva databases (v138)1),2)

Genus No. of deposited 
sequences

Sequence length statistics (bp) Avg. sequence 
quality (%) Species

Avg. Min Max

Charonina 16 1,316 806 1,537 94.25 Charonina ventriculi
Dasytricha 592 1,160 333 1,638 92.44 Dasytricha ruminantium
Diplodinium 141 1,299 464 1,780 94.45 Diplodinium anisacanthum, D. dentatum, and  

D. denticulatum
Diploplastron 29 1,011 465 1,637 94.62 Diploplastron affine
Enoploplastron 2 1,638 1,637 1,639 92.86 Enoploplastron triloricatum
Entodinium 688 1,170 317 1,647 94.54 Entodinium bursa, E. caudatum, E. dubardi, E. furca,  

E. longinucleatum, E. nanellum, and E. simplex
Eodinium 4 1,444 1,436 1,457 91.63 Eodinium posterovesiculatum
Epidinium 13 1,290 693 1,638 94.04 Epidinium caudatum, and E. ecaudatum caudatum
Eremoplastron 21 1,358 465 1,636 94.43 Eremoplastron dilobum, and E. rostratum
Eudiplodinium 108 1,403 346 1,637 93.68 Eudiplodinium maggii
Isotricha 132 904 400 1,641 90.80 Isotricha intestinalis, and I. prostoma
Metadinium 29 899 465 1,637 92.52 Metadinium medium, and M. minorum
Ophryoscolex 272 1,111 464 1,636 92.92 Ophryoscolex caudatus, and O. purkynjei
Ostracodinium 16 1,489 1,362 1,639 93.37 Ostracodinium clipeolum, O. dentatum, O. gracile,  

O. rugoloricatum, and O. trivesiculatum
Polyplastron 281 1,256 330 1,639 93.52 Polyplastron multivesiculatum
Uncultured 18 571 464 1,364 96.24 -
Total 2,362 1,171 317 1,780 93.42 -

1) Accessed on 2023.8.12.
2) Sequences from non-ruminal ciliates were not included.
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carbohydrate fermentation [8]. Notably, interspecies hydro-
gen transfer has emerged as a pivotal reason for the elevated 
methane production associated with ruminal ciliates [47,48]. 
Moreover, this insight led Guyader et al [48] to unveil a robust 
positive correlation between ruminal ciliate cell counts and 
methane production, which was backed by their meta-analysis 
of 28 experiments. Direct evidence of this interaction was 
provided from co-cultivation experiments, involving Poly-
plastron multivesiculatum and Methanosarcina barkeri, which 
revealed significantly higher methane production accompanied 
by hydrogen uptake within the co-culture [49]. Remarkably, 
this specific association accounted for up to a third of the 
total methane production [7-9], whereas complete removal 
of ruminal ciliates led to a reduction in methane output [6]. 
Furthermore, it is worth noting that partial inhibition of 
ruminal ciliates also had a mitigation effect on methane 
production [50], thereby underscoring the significance of 
curtailing ciliate-associated methanogenic populations for 
effective methane mitigation. 
 Fractionation-based investigations have highlighted dif-
ferences in the methanogen population between free-living 
and ciliate-associated fractions [51]. For instance, Methano-
brevibacter spp., are proportionally more associated with the 
ciliate-associated fraction, which is a phenomenon attributed 
to specific adhesins produced by the genus [52]. Moreover, 
within the Methanobrevibacter species, the prevalence of the 
SGMT clade in cattle has been linked to higher methane 
production [53-55]. Although research concerning the rela-
tionship between this clade and ruminal ciliates is limited, 
strategies targeting this specific methanogen–ruminal ciliate 
association could be promising for methane reduction. 
However, further research is needed to ascertain the speci-
ficity of this association pattern. 
 Methane-mitigating feed additives can have direct or in-
direct impacts on ruminal ciliate populations and are a 
critical factor influencing the success or failure of these ap-
plications in animal trials. The practical application of 3-NOP 
directly inhibited methanogenesis and resulted in an increase 
in hydrogen concentration; however, it failed to demonstrate 
the suppression of hydrogen-producing microorganisms, 
including ruminal ciliates, in sheep [56], dairy [57,58], and 
beef cattle [59] trials. This could be attributed to the intricate 
nature of the anaerobic microbiome and hydrogen balance 
in the rumen [60]. However, higher doses did achieve suffi-
cient hydrogen accumulation required to inhibit certain 
ruminal ciliate species, which resulted in a reduction in fibro-
lytic activity [60,61]. Nevertheless, the results are mixed, and 
while ruminal ciliate contributions to nitrate reduction have 
been noted during methane mitigation, an understanding of 
the mechanisms involved remains incomplete. Further, an 
enhanced metabolic reduction in nitrate and nitrite has been 
observed in faunated conditions in both in vitro and in vivo 

studies [62], with ciliates and associated bacteria potentially 
contributing to nitrite reduction [63]. This interaction high-
lights the role of ruminal ciliates in ensuring the safe application 
of nitrate for methane mitigation. Natural-product-based 
methane inhibitors, such as essential oil blends, endeavor to 
amplify efficacy through the combination of diverse plant 
secondary metabolites. Commercial products, such as Agolin 
and Mootral have demonstrated significant methane reduc-
tion in sheep [64] and dairy cattle [65], albeit with limited 
effectiveness in beef cattle [66]. Highly permeable plant sec-
ondary metabolites could potentially influence ruminal 
ciliate and methanogen populations [67], although a meta-
analysis suggested inconsistent effects on ruminal ciliates 
reduction through essential oil blends [68]. Saponins and 
tannins, naturally occurring secondary metabolites in plants, 
have long been recognized as methane inhibitors that poten-
tially target both hydrogen-producing microorganisms and 
methanogens [69-71]. A meta-analysis of in vitro experi-
ments indicated that saponin supplementation significantly 
reduced total ciliate concentrations, coupled with moderate 
methane mitigation effects [72]. Additionally, the analysis of 
49 sheep studies suggested that methane was significantly 
reduced through dietary saponins, based on methane yield 
per dry matter intake [73]. Among the in vivo studies report-
ing on ruminal ciliates in saponin applications, two-thirds 
observed a decrease in the total ciliate counts [74]. A recent 
meta-analysis involving beef cattle and tannin supplementa-
tion supported the methane mitigation potential, with a 
trend toward reduced ciliate counts [75]. The anti-protozoal 
activity of these representative plant secondary metabolites 
has been acknowledged, yet the extraction methods, dosages, 
plant source origins, and target animals should be considered 
to definitively ascertain their anti-protozoal activities while 
pursuing methane mitigation in ruminants.
 In total, several methane inhibitors incidentally inhibited 
protozoal activity, at least partially. However, total ciliate 
counts have primarily been employed as representative 
measurements to analyze their contribution to methane 
production. Notably, different groups of ruminal ciliates, 
namely entodiniomorphids and isotrichids, exhibit varying 
contributions to methane production in the rumen due to 
disparities in hydrogen production abilities [76]. Their dif-
ferent methanogen associations have also been observed 
[35], as demonstrated in a study on transfaunation involving 
ciliate-free sheep inoculated with isotrichids [77]. Given 
their mutualistic roles with methanogens, these interactions 
could differ based on the ciliate species involved. There-
fore, for synergistic or consistent methane reduction in the 
intricate rumen environment, the mechanisms of methane 
inhibitors on overall ruminal ciliate populations warrant 
further detailed investigations.
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The influence of ruminal ciliate populations on the 
nitrogen utilization efficiency
Previous studies have shown that ruminal ciliates harbor an 
array of protease-coding genes [78,79], and have also con-
firmed their proteolytic activity [80,81]. Although the presence 
of deaminase activity is yet to be confirmed through genome- 
and activity-based investigations, ruminal ciliates have been 
associated with a negative impact on NUE [82].
 Despite the fact that ruminal ciliate proteins possess an 
amino acid composition, which is preferable for the host 
animal than bacterial proteins [83], their actual contribution 
as microbial proteins to the host is likely less than their 
numerical presence in the rumen; thus, can ultimately be 
attributed to their behavioral traits including sequestration 
in the rumen [84,85] and overestimated ciliate proteins by 
bacterial contamination [86].
 Moreover, efforts to enhance NUE in the rumen have tar-
geted the ruminal ciliate population through complete (i.e., 
defaunation) or partial inhibition approaches. A 2015 meta-
analysis of 23 in vivo studies employing defaunating agents 
or methods in sheep and cattle underscored the significant 
negative impact of ruminal ciliates on NUE-related measure-
ments. This effect extended to both ruminal measurements, 
such as ammonia concentration and efficiency of microbial 
protein synthesis, and to measurements reflecting nitrogen 
flow in the lower gut, including duodenal nitrogen flow and 
urinary nitrogen excretion [6]. These findings align with 
earlier research by Eugène et al [87]. In 2019, Dai and Faciola 
[50] expanded this investigation to include 50 partial inhibi-
tion studies utilizing phytochemicals and lipids and concluded 
that reducing the ruminal ciliate population, notably, im-
proved the ruminal ammonia nitrogen concentration. 
 Bacterivory activity varies among ruminal ciliate families 
or genera [21]. Therefore, considering both bacterivory ac-
tivity and ciliate cell counts, Entodinium and Diplodinium 
spp. emerged as the potential factors limiting NUE [21]. 
However, the specific effects of these ciliate groups may vary 
with factors such as age, diet, host breeds, and genetics. A 
study involving monofaunated sheep demonstrated that the 
presence of ruminal ciliates resulted in a reduced transfer of 
microbial protein into the duodenum, with this effect being 
more pronounced in Entodinium-monofaunated sheep 
[11,88].
 The diverse impacts of nitrogen recycling associated with 
distinct ciliate populations have encouraged researchers to 
explore specific ciliate inhibition strategies. Given that rumi-
nal ciliates enhance the overall ruminal digestibility through 
their activities and the indirect neutralization of the ruminal 
environment [6], achieving an improved NUE by adjusting 
the ruminal ciliate population, particularly through partial 
inhibition of bacterivory ciliate species, is an appealing ap-
proach. However, further investigation is required. In vitro 

studies utilizing both ciliate monocultures and rumen fluid 
inocula have shown that restraining protease activities, while 
not limited to ruminal ciliates, could enhance NUE without 
adverse effects on ruminal fermentation and digestion [89,90]. 
Approaches such as selecting target enzymes specific to ru-
minal ciliates, screening feed additives with anti-protozoal 
properties, and adjusting rumen passage rates are also worthy 
of consideration.

The potential influence of ruminal ciliates on feed 
efficiency
Numerous research efforts have been directed towards eluci-
dating the factors underpinning the variations in the host 
feed efficiency and are often quantified using residual feed 
intake (RFI), within the context of the rumen microbiome. 
Thus, the lower microbial and functional diversities observed 
in the rumen microbiome potentially enable more efficient 
dietary energy utilization [91]. Notably, some potential micro-
bial biomarkers have been consistently identified in both 
low- and high-RFI ruminant groups. However, limited atten-
tion has been paid to the role of ruminal ciliates in this 
context. The meta-analysis mentioned earlier, focused on 
the impact of defaunation and established a connection be-
tween ruminal ciliates and higher dry matter intake, which 
resulted in lower average daily gains, and consequently, re-
duced feed conversion efficiency; a result that was particularly 
evident in low-quality diets [6,87]. Despite the specific effects 
of individual ciliate species on each aspect of animal perfor-
mance not yet having been defined, these limitations are 
likely due to the constrained NUE and increased metabolic 
heat production, which can potentially counteract the posi-
tive effect of ruminal ciliates on overall digestibility [6].
 In the case of Angus steers, the overall community of ru-
minal ciliates differed according to RFI [92]. Although no 
differences were observed among the classified ciliate genera 
in relation to RFI, efficient Angus steers exhibited higher 
operational taxonomic unit richness and phylogenetic di-
versity in their ciliate communities. These characteristics in 
low-RFI animals might facilitate an increase in feed digest-
ibility and energy extraction from substrates. The intriguing 
phenomenon of preferential bacterivory on specific bacterial 
groups, especially major cellulolytic consortia, could poten-
tially arise due to unbalanced dietary preferences among 
individual ciliate species. However, this hypothesis remains 
inconclusive due to the limited number of prey tested to date 
[93,94]. 
 Moreover, attempts to enhance the overall animal perfor-
mance through ruminal ciliates-enriched inocula, particularly 
for entodiniomorphids, have currently failed to yield signifi-
cant improvements, both in pre-weaning dairy calves [95,96] 
and in post-weaning periods [97]. Although the positive im-
pact on diarrhea reduction was not linked to shifts in the 
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rumen microbiome or ciliate populations, more comprehen-
sive studies are warranted to assess the advantages and 
disadvantages of ruminal ciliates, particularly for young ru-
minants. 
 Furthermore, the composition of ruminal ciliates could 
potentially influence the enrichment of bacterial groups as-
sociated with feed efficiency. Differential abundance by 
Proteobacteria in ciliate-associated fractions has been ob-
served in various rumen studies [16,37-39], as well as in 
marine ciliates [98]; a correlation that might be connected to 
the prevalence of Succinivibrionaceae in feed-efficient animals 
[99,100]. Given that these bacteria are known hydrogen uti-
lizers, their affiliation with ruminal ciliates seems metabolically 
sound, enabling them to outcompete other bacterial rivals 
within the faunated environment. Consequently, the report-
ed association between ruminal ciliates and rumen microbiota 
markers within the feed efficiency context should be further 
explored to facilitate their enrichment within the rumen. 

Future prospects in the study of ruminal ciliates: 
genomics and transcriptomics
As highlighted earlier in this review, the inability to culture 
axenic populations of ruminal ciliates presents a significant 
challenge, limiting the application of conventional microbio-
logical methods to characterize these unculturable unicellular 
eukaryotes. Therefore, much of our understanding of rumi-
nal ciliates stems from indirect evidence, including defaunation 
studies or in vitro cultures encompassing other domains of 
rumen microbes [6,23,24,29,101]. To transcend the constraints 
of culture-based approaches, sequencing the metabolically 
active macronuclear genome offers authentic insights into 
ruminal ciliates, which has been aided by advancements in 
sequencing technologies. The initial macronuclear genome 
sequencing of Entodinium caudatum has paved the way for 
future research into fundamental questions on ruminal cili-
ates and the exploration of practical strategies for manipulating 
these ruminal ciliates within the rumen [78]. This genome, 
complemented by previous transcriptomic data [102], has 
unveiled evidence of horizontal gene transfers of numerous 
carbohydrate-active enzymes (CAZymes) and an abundance 
of protease-coding genes. These findings underscore the 
adaptive strategy of the ruminal ciliates for surviving in a 
carbohydrate-rich and complex anaerobic microbiota in the 
rumen environment. Building on these insights, Li et al [79] 
extended the exploration by adding 69 single-cell amplified 
genomes from ruminal ciliates to the repertoire. Their as-
sembly of telomereless contigs from macronuclear sequences 
has facilitated an approximate 12% average mapping rate for 
metagenomic reads from publicly available rumen metage-
nomes to ciliate genomes. Hence, single-cell sequencing has 
emerged as a compelling avenue for studying ruminal ciliates, 
which are often contaminated with other microbes and are 

resistant to culturing. However, owing to technical constraints 
in multiple displacement amplifications, which is employed 
for isolated single cells, overall genome completeness ranged 
from 8% to 91%. This wide range underscores the need for 
improved sequencing platforms and a greater repository of 
ciliate culture collections to refine these tentative ciliate 
genomes. As these future genome databases mature, the de-
velopment of genetic tools tailored to ruminal ciliates is 
essential for conducting functional genomics that validates 
the roles of genes annotated within the ciliate genome. Single-
cell transcriptomics, complemented by precise cell sorting, is 
a powerful tool for analyzing differential gene expression 
profiles of individual ciliate cells under diverse feeding and 
environmental conditions, uncontaminated by prokaryotic 
data.
 The application of biochemical characterizations following 
macronuclear genome sequencing holds promise in verifying 
the activity of protein-coding genes, particularly CAZymes 
of ruminal ciliates. Findley et al [103] and Williams et al [104] 
utilized an activity-based screening from cDNA libraries of 
ruminal ciliates-enriched samples to successfully characterize 
carbohydrate-degrading enzymes, thereby demonstrating 
the degradation of plant cell wall constituents. Additionally, 
Williams et al [104] also used a metatranscriptomic analysis 
to provide evidence of fungal predation by ruminal ciliates, 
thereby revealing elevated chitinase expression. To effectively 
implement these approaches, as emphasized by these authors, 
it is essential to enrich for polyadenylated mRNA in order to 
eliminate microbiota contamination before cDNA synthesis 
followed by the concentration of targeted ruminal ciliates.

CONCLUSION

Collectively, the research presented in this review has at-
tempted to advance our understanding of ruminal ciliates, 
particularly in elucidating their complex associations with 
prokaryotic partners, their contributions to ruminal me-
tabolism, and the modulation of the ruminal microbiome. 
Recent meta-analyses have highlighted the relationship be-
tween ruminal ciliates and both ruminal methanogenesis 
and NUE. Within the dynamic framework of the ruminal 
microbiome, there exists a compelling need for systematic 
investigations, which are focused on delineating the precise 
interactions between ruminal methanogens and deaminating 
bacteria, a crucial avenue that can be used to steer ruminal 
fermentation to environmentally sustainable outcomes. To 
achieve this crucial goal, it becomes imperative to develop 
streamlined and reproducible cultivation methods and to 
elevate molecular approaches capable of discerning pro-
karyotic contaminants within the complex consortium of 
ruminal ciliates. Furthermore, the momentum placed on 
refining these methodologies is important because it will 



www.animbiosci.org  391

Tansol Park (2024) Anim Biosci 37:385-395

allow for more rigorous investigations. In this way, the in-
tegration of more comprehensive genomic insights for 
individual ruminal ciliate species is a most welcome devel-
opment. Indeed, these robust genome resources will furnish 
bioinformatic reference databases, serving as both markers 
for taxonomic classification and as critical tools for precise 
functional annotation in the broader analysis of the entire 
rumen microbiome. Guided by these multifaceted approaches, 
the field of ruminal ciliate research is poised to increase 
our comprehension of this interesting microbial cohort. 
Moreover, as we continue to investigate their basic biology 
and interplay with other ruminal microorganisms, the way 
of ruminal ciliate investigations is primed to guide in a new 
era of understanding. 
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