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Protective effect of Macleaya cordata isoquinoline alkaloids on 
lipopolysaccharide-induced liver injury in broilers

Jiaxin Chen1, Weiren Yang2, Hua Liu3, Jiaxing Niu2, Yang Liu2, and Qun Cheng1,*

Objective: This experiment aimed to explore the protective action of dietary supplementation 
with isoquinoline alkaloids (IA) from Macleaya cordata on lipopolysaccharide (LPS)-induced 
liver injury in broilers. 
Methods: Total 216 healthy broilers were selected in a 21-d trial and assigned randomly to 
the following 3 treatments: control (CON) group, LPS group, and LPS+IA group. The CON 
and LPS groups were provided with a basal diet, whereas the LPS+IA group received the 
basal diet supplemented with 0.6 mg/kg Macleaya cordata IA. Broilers in LPS and LPS+IA 
groups were intraperitoneally injected with LPS (1 mg/kg body weight) at 17, 19, and 21 
days of age, while those in CON group were injected with equivalent amount of saline 
solution.
Results: Results showed LPS injection caused systemic and liver inflammation in broilers, 
inhibited immune function, and ultimately lead to liver injury. By contrast, supplementation 
of IA ameliorated LPS-induced adverse change in serum parameters, boosted immunity in 
LPS+IA group. Furthermore, IA suppressed the elevation of hepatic inflammatory cytokines 
and caspases levels induced by LPS, as well as the expressions of genes related to the toll-
like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-
kappa B (NF-κB) pathway. 
Conclusion: Dietary inclusion of 0.6 mg/kg Macleaya cordata IA could enhance immune 
function of body and inhibit liver damage via inactivating TLR4/MyD88/NF-κB signaling 
pathway in broilers.
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INTRODUCTION

The liver plays a key role in the metabolism of nutrients, regulation of immune system, 
decomposition of chemicals and drugs, and other physiological functions [1]. At present, 
the intensification and scale of poultry breeding improves the efficiency and profit of poultry 
production, but the risk of liver damage to broilers also increases due to the effects of environ-
ment, pathogenic bacteria and feed mycotoxin contamination [2]. Especially, bacterial 
infection-induced liver damage is very common in modern broiler chicken production 
[3,4]. In the past, antibiotic therapy was an effective method of liver protection [5]. However, 
antibiotics have been banned for use in animal production and restricted to the therapeutic 
use in view of the livestock health and food safety caused by the abuse of antibiotic feed 
additives [6]. Therefore, looking for alternatives to antibiotics has become a hot spot in 
animal production in recent years [2,7].
 Macleaya cordata is a perennial herb medicinal plant. Numerous studies have demon-
strated that its extracts possess a variety of biological activities, including anti-inflammatory, 
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antioxidant, and immune regulation, and remarkable efficacy 
in enhancing the production of all kinds of livestock and 
poultry [7,8]. Benzophenanthridine alkaloids (BA; sanguin-
arine and chelerythrine) and isoquinoline alkaloids (IA; 
protopine and allocryptopine) are the main primary con-
stituents found in extracts of Macleaya cordata [9]. Currently, 
there has been extensive research on the impact of Macleaya 
cordata BA on animal production and health status [9-11], 
however, there is a limited amount of evaluation of Macleaya 
cordata IA in animal production. The IA from Macleaya 
cordata have recently been approved as a veterinary drug, 
named as Bopu Powder (veterinary drug No.180415374), 
for the treatment of Escherichia coli (E. coli)-induced chicken 
diarrhea [12]. A previous study in laying hens showed that 
1.5 to 6 mg/kg IA addition had no additive effects, while 
dietary 0.38 to 0.75 mg/kg IA supplementation had a greater 
impact on egg quality and antioxidant status [12]. Liu et al 
[7] indicated that including 0.6 mg/kg of IA derived from 
Macleaya cordata in the broiler diet could significantly en-
hance growth performance and liver health of broilers. 
Moreover, the intestinal development and physiological 
function of broilers were improved by Macleaya cordata IA 
addition to the basal diet, characterized by reduction of in-
flammatory response, improvement of antioxidant capacity, 
and increase of beneficial bacteria abundances in the intes-
tine [13]. Nevertheless, there is little relevant literature on 
whether dietary supplementation of Macleaya cordata IA 
can relieve liver injury of broilers.
 As the composition of Gram-negative bacteria membrane 
structure, lipopolysaccharide (LPS) can stimulate monocyte 
macrophages to secrete inflammatory cytokines causing in-
flammatory damage to the liver [14,15]. Huang et al [16] has 
proved that intraperitoneal administration of 50 mg/kg body 
weight (BW) LPS enhanced inflammatory cell infiltration and 
cell apoptosis of broiler liver tissue by activating toll-like re-
ceptor 4 (TLR4) signaling pathway, leading to acute injury of 
broiler liver. Moreover, recent study in broilers indicated that 
dietary addition with IA from Macleaya cordata could de-
creased hepatic inflammation via inhibition of TLR4/myeloid 
differentiation primary response 88 (MyD88)/nuclear factor-
kappa B (NF-κB) signaling pathway [7]. Therefore, this study 
aimed to explore the potential of dietary Macleaya cordata 
IA supplementation to alleviate liver injury after an LPS 
challenge in broilers based on TLR4/MyD88/NF-κB signaling 
pathway.

MATERIALS AND METHODS

The animal study protocol was approved by the Ethics Com-
mittee of Qingdao Agricultural University (protocol code 
QAU20220103195).

Animal and treatments
A total of 216 Arbor Acres (AA) broilers, healthy and 1-day-
old with similar BW (48.35±0.41 g), were divided randomly 
into three treatments devoted control (CON) group, LPS 
group, and LPS+IA group, respectively. Each treatment group 
had 6 replicates with 12 broilers in each replicate. Broilers in 
the CON group and LPS group were provided with a basal 
diet, whereas broilers in the LPS+IA group were given a basal 
diet added with 0.6 mg/kg IA which was extracted from Ma-
cleaya cordata [7]. The IA is provided by the Hunan Meikeda 
Biological Resources (Changsha, China), and the ratio of 
protopine to allotypotopine is 2:1 [12,13]. The basal diet (Table 
1) was prepared following the broiler nutritional require-
ments recommended by the Chinese Ministry of Agriculture 
(2004). The trial lasted for 21 days. At 07:00 am on days 17, 
19, and 21, the broilers of LPS group and LPS+IA group were 
injected with 0.5 mL of LPS (1 mg/kg BW; L2880, E. coli 

Table 1. Ingredients composition and nutrient levels of basal diets 
(as-fed basis)

Items Content

Ingredients (%)
Corn 55.91
Soybean meal, 44% CP 13.78
Wheat bran 11.98
Corn starch residue 7.99
Corn gluten meal 3.99
Extruded soybean 1.50
Limestone 1.70
Calcium monophosphate 1.10
L-Lysine HCl 1.00
DL-Methionine 0.20
L-Threonine 0.10
Sodium chloride 0.40
Choline 0.10
Phytase 0.10
Complex enzyme 0.02
Trace mineral premix1) 0.10
Vitamin premix2) 0.02
Antioxidant 0.02
Total 100

Calculated analysis (%)
Metabolizable energy (MJ/kg) 12.33
Crude protein 19.47
Crude fat 3.45
Calcium 0.94
Available phosphorus 0.35
Lysine 1.15
Methionine 0.50

1) Provided per kilogram of complete basal diet: 100 mg of Fe as FeSO4, 
10 mg of Cu as CuSO4, 65 mg of Zn as ZnSO4, 1.1 mg of I as Ca(IO3)2, 
100 mg of Mn as MnSO4 and 0.3 mg of Se as Na2SeO3.
2) Provided per kilogram of complete basal diet: vitamin D3 3,000 IU, vita-
min A 10,000 IU, vitamin K3 1.3 mg, vitamin E 30 IU, biotin 0.2 mg, folic 
acid 1 mg, niacin 40 mg, D-calcium pantothenate 10 mg, vitamin B1 2.2 
mg, vitamin B2 8 mg, vitamin B3 8 mg, vitamin B6 4 mg, and vitamin B12 
0.025 mg.
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O55:B5; Sigma-Aldrich, St. Louis, MO, USA), while the 
chickens of the CON group were injected with 0.9% sterile 
saline of the equivalent volume [17,18]. During the whole 
experiment, all broilers were kept in a three-level cages in a 
light- and temperature-controlled room, and had free access 
to feed and water.

Sample collection
On day 21 of the trial, one broiler per replicate was selected, 
with BW closest to the average weight of each replicate, and 
blood samples (10 mL) were collected from wing vein after 
3 hours of LPS challenge. These samples were collected into 
vacuum tubes without heparin sodium, and the supernatant 
was divided into 1.5 mL EP tubes after centrifugation at 3,500 g 
and stored in –35°C until further analysis. Afterwards, the 
broilers were euthanized and about 2 g liver samples were 
collected. Part of the liver samples was cut up and loaded 
into 2 mL frozen storage tubes, and then stored at –80°C after 
being frozen quickly with liquid nitrogen; the other part was 
fixed with 4% paraformaldehyde solution at room tempera-
ture for 24 hours.

Liver histopathological examination
Liver tissue samples were dehydrated using various concen-
trations of ethyl ethanol and then embedded in paraffin wax 
after being fixed with a 4% paraformaldehyde solution for 
24 hours. Afterward, the liver tissues embedded in paraffin 
were sliced into sections measuring 5 micrometers and then 
subjected to staining with hematoxylin and eosin (H&E) to 
facilitate morphological analysis. In the end, liver sections were 
observed through the use of a digital microscope (Olympus 
BX 51, Tokyo, Japan).

Determination of serum biochemical parameters 
concentrations
The levels of total protein (TP), albumin (ALB), high density 
lipoprotein (HDL), total cholesterol (TCHO), low density 
lipoprotein (LDL), triglycerides (TG), glucose (GLU), urea 
nitrogen (UREA), and alanine aminotransferase (ALT) in 
the serum were examined using commercial kits (Jiancheng 
Bioengineering Institute, Nanjing, China) on a Roche auto-
mated biochemical analyzer (Roche Diagnostic System Inc., 
Indianapolis, IN, USA).

Determination of serum immunoglobulins and 
complements concentrations
Commercial enzyme-linked immunosorbent assay (ELISA) 
kits (Meimian Industrial Co., Ltd, Jiangsu, China) were 
used to determine serum levels of immunoglobulin A (IgA), 
immunoglobulin G (IgG), immunoglobulin M (IgM), and 
complements C3 and C4. The measurement procedures were 
performed according to the description in Chen et al [19].

Determination of inflammatory cytokines 
concentrations and hepatic caspases activities
The levels of interleukin (IL)-1β, tumor necrosis factor α 
(TNF-α), IL-4, IL-6, and IL-10 in the serum, along with the 
concentrations of NOD-like receptor family pyrin domain 
containing 3 (NLRP3), TNF-α, IL-1β, IL-6, and IL-18 in the 
liver were determined using ELISA kits purchased from R&D 
Systems Inc. (Minneapolis, MN, USA), and all test steps were 
performed according to Chen et al [20]. The levels of caspase-3 
and caspase-1 was measured with the ELISA kits purchased 
form Jiancheng Bioengineering Institute following the pro-
tocol described in Li et al [14].

Determination of gene expression in liver
The extraction of total RNA from the liver samples used the 
AG RNAex Pro reagent (Accurate Biology, Hunan, China). 
The cDNA was synthesized by the reverse transcription (RT) 
kit (Accurate Biology, China), and real-time quantitative 
polymerase chain reaction (RT-qPCR) was amplified with 
SYBR Green Premix Pro Taq HS qPCR Kit (Accurate Biology, 
China). The mRNA expression levels of all primers, includ-
ing TLR4, MyD88, NF-κB, B-cell-lymphoma-2 (Bcl-2), and 
Bcl-2-associated X (Bax) were examined using a LightCycler 
96 (Roche Basel, Switzerland). All primers sequences are 
listed in Table 2. The expression of the actin-associated gene 
target mRNA was calculated using the β-actin as an internal 
reference gene with 2–ΔΔCT method [21].

Statistical analysis
To test the statistical variances among treatments, a one-way 
analysis of variance was conducted using SAS 9.4 (Institute 
Inc., Cary, NC, USA) after assessing the data's normal distri-
bution using Shapiro-Wilk statistics (W>0.05). And the least 
significant procedure was used for multiple comparison anal-

Table 2. Primer sequences used for quantitative real-time polymer-
ase chain reaction 

Genes Gene bank No. Primer sequences1) (5’-3’)

β-actin NM_205518.1 F: TTGGTTTGTCAAGCAAGCGG
R: CCCCCACATACTGGCACTTT

TLR4 NM_001030693.1 F: AGGCACCTGAGCTTTTCCTC
R: TACCAACGTGAGGTTGAGCC

MyD88 XM_046910878.1 F: TGATGCCTTCATCTGCTACTG
R: TCCCTCCGACACCTTCTTTCTA

NF-κB NM_001396038.1 F: CAGCCCATCTATGACAACCG
R: TCAGCCCAGAAACGAACCTC

Bax XM_422067 F: GGTGACAGGGATCGTCACAG
R: TAGGCCAGGAACAGGGTGAAG

Blc-2 NM_205339.2 F: GCTGCTTTACTCTTGGGGGT
R: CTTCAGCACTATCTCGCGGT

TLR4, toll-like receptor 4; MyD88, myeloid differentiation primary re-
sponse 88; NF-κB, nuclear factor-kappa B; Bax, Bcl-2-associated X; Blc-2, 
B-cell-lymphoma-2. 
1) F, forward; R, reverse.
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ysis. All data were expressed as the mean±standard error in 
the figures. Significant differences are identified using * p< 
0.05, ** p<0.01, and *** p<0.001, and # 0.05<p<0.10 is con-
sidered as a significant trend. The "ns" is considered as non-
significant differences.

RESULTS 

Serum concentrations of biochemical parameters
As shown in Figure 1, relative to the CON group, LPS ad-
ministration significantly increased serum concentrations of 
LDL (Figure 1D) and ALT (Figure 1I) (p<0.05), and tended 
to increase serum TCHO (Figure 1E) concentration of broilers 
(p<0.10). Supplementing the diet with IA inhibited LPS-in-
duced increases in serum concentrations of LDL, TCHO, 
and ALT to the levels observed in the CON group (p>0.05). 

The three groups did not show any notable variations in the 
serum levels of TP (Figure 1A), ALB (Figure 1B), HDL (Fig-
ure 1C), TG (Figure 1F), GLU (Figure 1G), and UREA (Figure 
1H) (p>0.05).

Serum inflammatory cytokines concentrations
As displayed in Figure 2, compared with the CON group, 
broiler chickens in the LPS group showed significantly higher 
serum TNF-α (Figure 1A), IL-1β (Figure 1B), IL-6 (Figure 
1D), and IL-10 (Figure 1E) concentrations (p<0.05), but sig-
nificantly lower serum IL-4 (Figure 1C) level (p<0.05). In 
LPS-challenged broilers, IA supplementation significantly 
decreased serum concentrations of TNF-α, IL-6, and IL-10 
(p<0.05). Meanwhile, LPS+IA group showed significantly 
higher serum TNF-α and IL-1β concentrations (p<0.05) and 
significantly lower serum IL-4 and IL-6 concentrations (p< 

Figure 1. Effects of dietary Macleaya cordata isoquinoline alkaloids (IA) on serum concentrations of biochemical parameters in broilers challenged 
with lipopolysaccharide (LPS). (A) Total protein (TP); (B) Albumin (ALB); (C) High density lipoprotein (HDL); (D) Low density lipoprotein (LDL); (E) Total 
cholesterol (TCHO); (F) Triglycerides (TG); (G) Glucose (GLU); (H) Urea nitrogen (UREA); (I) Alanine transaminase (ALT). CON, broilers given a basal 
diet; LPS, LPS-challenged broilers given a basal diet; LPS+IA, LPS-challenged broilers given a basal diet supplemented with 0.6 mg/kg IA extracted 
from Macleaya cordata. All data were expressed as the mean±standard error in the figures. Significant differences were indicated using * p<0.05 
and ** p<0.01, and # 0.05<p<0.10 is considered as a significant trend. The "ns" is considered as non-significant differences.
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0.05) than CON group, while there was no significant differ-
ence in serum IL-10 concentration between the CON and 
LPS+IA groups (p>0.05).

Serum immunoglobulins and complements levels
As displayed in Figure 3, significantly higher serum IgG 
(Figure 1B) concentration (p<0.05) and significantly lower 
serum IgM (Figure 1C) and complement C3 (Figure 1D) 
concentrations (p<0.05) were observed in the LPS group 
compared with the CON group. Supplementing the diet 
with IA led to a significant rise in the levels of IgA (Figure 
1A), IgM, and C3 in the serum in LPS-challenged broilers 
(p<0.05). Additionally, broilers in the LPS+IA group exhib-
ited notable enhancements in serum IgA and IgM levels (p< 
0.05), and displayed a tendency to raise serum IgG and C3 
concentrations (p<0.10) in comparison to broilers in the 
LPS group. The serum complement C4 (Figure 1E) concen-
tration did not show any notable variation among the three 
groups (p>0.05).

Hepatic histopathology
The CON group showed a uniform arrangement of hepato-
cytes, normal hepatic sinusoid development, and unobvious 
inflammatory cell exudation though a slight vacuolar steatosis 
was observed (Figure 4). In the LPS group, a large amount of 
cell degeneration and inflammatory cell infiltration, fewer 

lymphocytes and a small number of macrophages were ob-
served in the livers. In the LPS+IA group, hepatocytes were 
arranged evenly and orderly with normal hepatic sinusoids, 
while there was a trend of cell division repair and slight exu-
dation of inflammatory cells.

Hepatic inflammatory factors and caspases activities
Compared to the CON group, LPS injection resulted in sig-
nificant increases in hepatic levels of TNF-α (Figure 1A), IL-
1β (Figure 1B), IL-6 (Figure 1C), IL-18 (Figure 1D), NLRP3 
(Figure 1E), caspase-3 (Figure 1F), and caspase-1 (Figure 
1G) (p<0.05) (Figure 5). In LPS-challenged broilers, adding 
IA to the diet significantly decreased TNF-α, IL-6, IL-1β, 
NLRP3, caspase-3, and caspase-1 levels in the liver (p<0.05). 
Moreover, supplementing IA to the diet alleviated LPS-in-
duced increases in liver concentrations of IL-1β, IL-6, and 
caspase-3 to levels observed in the CON broilers (p>0.05). 
However, hepatic TNF-α, NLRP3, and caspase-1 levels were 
significantly higher in LPS+IA group than in CON group 
(p<0.05), and hepatic IL-18 concentration tended to be higher 
in LPS+IA group than in CON group (p<0.10).

Hepatic genes expressions
As shown in Figure 6, LPS administration significantly up-
regulated the mRNA expression of NF-κB (Figure 1C) (p< 
0.05), and tended to increase the mRNA expressions of MyD88 

Figure 2. Effects of dietary Macleaya cordata isoquinoline alkaloids (IA) on serum inflammatory cytokines concentrations in broilers challenged 
with lipopolysaccharide (LPS). (A) Tumor necrosis factor α (TNF-α); (B) Interleukin-1β (IL-1β); (C) Interleukin-4 (IL-4); (D) Interleukin-6 (IL-6); (E) In-
terleukin-10 (IL-10). CON, broilers given a basal diet; LPS, LPS-challenged broilers given a basal diet; LPS+IA, LPS-challenged broilers given a basal 
diet supplemented with 0.6 mg/kg IA extracted from Macleaya cordata. All data were expressed as the mean±standard error in the figures. Signifi-
cant differences were indicated using * p<0.05, ** p<0.01, and *** p<0.001, and # 0.05<p<0.10 is considered as a significant trend. The "ns" is con-
sidered as non-significant differences.
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(Figure 1B) and Bax/Bcl-2 ratio (Figure 1F) (p<0.10) in the 
liver compared with the CON group. In contrast, dietary IA 
addition significantly decreased the genes expressions of 
MyD88, Bax (Figure 1D), and Bax/Bcl-2 ratio (p<0.05), and 
tended to decrease NF-κB expression in the liver against LPS 
challenge (p<0.10). Down-regulated mRNA expressions of 
Bax (p<0.05) and Bax/Bcl-2 ratio (p<0.10) were observed in 
LPS+IA group compared to CON group, and there were no 
differences in hepatic MyD88 and NF-κB mRNA expressions 
between CON and LPS+IA groups (p>0.05). No significant 
differences were observed in TLR4 (Figure 1A) and Bcl-2 
(Figure 1E) expressions among the three groups (p>0.05). 

DISCUSSION

In the present study, LPS administration resulted in the in-
crease in serum ALT activity of broilers, which was in accord 
with previous study [16]. ALT is an enzyme which is abun-
dant in hepatocytes, and its activity is about 3,000 times greater 
in liver than in serum [22]. Once hepatocytes were disrupted 
and permeability of the cell membranes increased, it will be 
released into the bloodstream, causing a great elevation in 
serum ALT activity [14]. In view of this, serum ALT activity 
is often used as an important indicator and clinical detection 
tool to evaluate body hepatocyte injury [23]. Besides, com-
plement C3 was observed to be decreased by LPS injection 

Figure 3. Effects of dietary Macleaya cordata isoquinoline alkaloids (IA) on serum immunoglobulins and complements levels in broilers challenged 
with lipopolysaccharide (LPS). (A) Immunoglobulin A (IgA); (B) Immunoglobulin G (IgG); (C) Immunoglobulin M (IgM); (D) Complement C3; (E) 
Complement C4. CON, broilers given a basal diet; LPS, LPS-challenged broilers given a basal diet; LPS+IA, LPS-challenged broilers given a basal 
diet supplemented with 0.6 mg/kg IA extracted from Macleaya cordata. All data were expressed as the mean±standard error in the figures. Signifi-
cant differences were indicated using * p<0.05, ** p<0.01, and *** p<0.001, and # 0.05<p<0.10 is considered as a significant trend. The "ns" is con-
sidered as non-significant differences.

Figure 4. Effects of dietary Macleaya cordata isoquinoline alkaloids (IA) on hepatic histopathology in broilers challenged with lipopolysaccharide 
(LPS). CON, broilers given a basal diet; LPS, LPS-challenged broilers given a basal diet; LPS+IA, LPS-challenged broilers given a basal diet supple-
mented with 0.6 mg/kg IA extracted from Macleaya cordata.
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in current study. Complement C3 is a crucial component of 
the innate immune system, forming a major host mecha-
nism for potential pathogens clearance in association with 
other complements [24]. Complement C3 deficiency often 
occurred together with the diminished regenerative capacity 
of liver [25], and inflammatory damage to the liver could 

lead to a reduction in complement C3 concentration [26]. 
The entrance of LPS to the bloodstream leads to the activa-
tion of immune cells, and thereby results in the activation of 
the complement systems [27], during which the comple-
ment C3 will be cleaved to C3a and C3b by C3-convertase 
[28]. Moreover, complement activation products could in-

Figure 5. Effects of dietary Macleaya cordata isoquinoline alkaloids (IA) on hepatic inflammatory factors and caspases activities in broilers challenged 
with lipopolysaccharide (LPS). (A) Tumor necrosis factor α (TNF-α); (B) Interleukin-1β (IL-1β); (C) Interleukin-6 (IL-6); (D) Interleukin-18 (IL-18); (E) 
NOD-like receptor family pyrin domain containing 3 (NLRP3); (F) Caspase-3; (G) Caspase-1. CON, broilers given a basal diet; LPS, LPS-challenged 
broilers given a basal diet; LPS+IA, LPS-challenged broilers given a basal diet supplemented with 0.6 mg/kg IA extracted from Macleaya cordata. 
All data were expressed as the mean±standard error in the figures. Significant differences were indicated using * p<0.05, ** p<0.01, and *** p<0.001, 
and # 0.05<p<0.10 is considered as a significant trend. The "ns" is considered as non-significant differences.

Figure 6. Effects of dietary Macleaya cordata isoquinoline alkaloids (IA) on hepatic genes expressions in broilers challenged with lipopolysaccharide 
(LPS). (A) Toll-like receptor 4 (TLR4); (B) Myeloid differentiation primary response 88 (MyD88); (C) Nuclear factor-kappa B (NF-κB); (D) Bcl-2-asso-
ciated X (Bax); (E) B-cell-lymphoma-2 (Bcl-2); (F) Bax/Bcl-2 ratio. CON, broilers given a basal diet; LPS, LPS-challenged broilers given a basal diet; 
LPS+IA, LPS-challenged broilers given a basal diet supplemented with 0.6 mg/kg IA extracted from Macleaya cordata. All data were expressed as 
the mean±standard error in the figures. Significant differences were indicated using * p<0.05 and ** p<0.01, and # 0.05<p<0.10 is considered as a 
significant trend. The "ns" is considered as non-significant differences.
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duce liver injury via acting on PI3K signaling pathway [29]. 
Previous study in rats indicated that salvianolic acid A could 
attenuate liver damage through blocking LPS-induced com-
plement terminal activation [30]. In the present study, LPS 
broilers also showed obvious pathological alterations, such 
as cell degeneration and inflammatory cell infiltration, and 
increased pro-inflammatory cytokines. The results above in 
this study indicated the successful establishment of the ani-
mal model for liver injury induced by intraperitoneal injection 
of 1 mg/kg BW LPS, which was in line with previous studies 
[17,18]. On the other hand, dietary supplementation with 
0.6 mg/kg IA effectively inhibited LPS injection-induced in-
creases in serum ALT concentration and reduced exudation 
of inflammatory cells in liver, suggesting that Macleaya cor-
data IA addition could ameliorate the LPS-induced liver 
injury in broilers. 
 The liver is a very important, frontline immune tissue, 
and liver injury can severely impair its functionality [30]. 
The immunoglobulins and complement components pro-
duced by the liver and circulating in the plasma play an 
important role in defending against bacterial infections 
and confers passive immunity [31]. Relative to the CON 
group, LPS stimulation decreased IgM and complement 
C3 concentrations in the serum, but, interestingly, increased 
serum IgG concentration in this study. Acting as the initial 
line of defense against infections, the IgM, which is the first 
isotype of antibodies to emerge during immune responses, 
plays a crucial role in host protection [32]. However, the 
IgG is not only of anti-inflammatory activity, but also can 
induce pro-inflammatory responses during infection with 
pathogenic microorganisms [33]. In current study, Macleaya 
cordata IA addition increased IgM and C3 concentrations 
as well as IgA concentration in serum in LPS-challenged 
broilers. Immunoglobulin A is the most abundant immu-
noglobulin synthesized in the body, and is active against 
several pathogens [34]. Liu et al [7] also observed increased 
serum IgA, IgM, and C3 concentrations by Macleaya cordata 
IA supplementation in broilers. Therefore, the findings of 
this study indicated that dietary Macleaya cordata IA addition 
could enhance host defense and immunoregulatory func-
tion, and alleviate LPS-induced compromised immune 
function in broilers.
 Inflammatory response is an important precipitating fac-
tor in liver damage in modern intensive feeding [35]. In the 
current study, we also noticed that LPS administration led to 
an increase in serum LDL and TCHO concentrations, which 
were regarded two important indictors of cholesterol metab-
olism. The LDL is responsible for transporting cholesterol 
from the liver to peripheral tissues, which raises the chances 
of hyperuricemia and atherosclerosis [36]. When LDL accu-
mulates in the intima, it activates the endothelium to express 
leukocyte adhesion molecules and chemokines, leading to 

signaling pathways activation and inflammatory cytokines 
release [37]. The inflammatory cytokines are essential for 
the host-response and resistance to pathogens, and their ex-
cess secretion also exacerbate necrosis or apoptosis during 
chronic disease and acute tissue injury [38,39]. Consistently, 
stimulation of LPS resulted in the increases in pro-inflamma-
tory cytokines (TNF-α, IL-1β, and IL-6) and led to decreased 
anti-inflammatory cytokine (IL-4) in serum in this study. 
Besides, LPS challenge increased the secrete of TNF-α, IL-1β, 
IL-6, and IL-18 in the liver. Tumor necrosis factor-α is pro-
duced by macrophages/monocytes during acute inflammation 
and is responsible for a diverse range of signaling events within 
cells, thus bring about immune damage of hepatic cells [40]. 
Interleukin-1 beta and IL-18 are both members of IL-1 super-
family of cytokines, and usually induced by inflammatory 
signals in a variety of immune cell types [38,41]. In addition, 
TNF-α and IL-1β can also induce the secretion of IL-6, me-
diating the impairment of liver cell function and aggravating 
liver tissue damage [42,43]. However, dietary supplementa-
tion with IA from Macleaya cordata inhibited the increases 
in serum and liver TNF-α, IL-1β, and IL-6 concentrations 
induced by LPS injection to a certain extent. Recent study in 
broilers also indicated that Macleaya cordata IA could reduce 
IL-1β and IL-6 levels in the liver [7]. Interestingly, we also 
found that LPS administration significantly increased serum 
concentration of IL-10, a prototypical anti-inflammatory cyto-
kine produced by CD4 (+) cells and playing a significant 
part in reducing inflammatory response via inhibiting T cell 
functions and the upstream activities of antigen presenting 
cells [44]. Treffkorn et al [45] demonstrated that LPS admin-
istration could result in a release of TNF-α, IL-6, and IL-10 
in rat liver macrophages. Moreover, previous study also 
found that increased serum concentration of IL-6 frequently 
accompanied an increased level of IL-10 in serum under 
inflammatory conditions [46]. In this study, dietary IA sup-
plementation suppressed the LPS-induced release of IL-10 
to the level observed in broilers fed the CON diet. Hence, 
our findings suggested that 0.6 mg/kg Macleaya cordata IA 
supplementation could relieve LPS challenge-induced liver 
damage through suppressing systemic and liver inflamma-
tion in broilers.
 In order to explore the possible mechanisms of Macleaya 
cordata IA relieving LPS-induced hepatic inflammation fur-
ther, the expressions of the TLR4/MyD88/NF-κB signaling 
pathway were quantitatively analyzed. The receptor system 
of TLR4 can recognize LPS molecules, and then initiates the 
generation of downstream proteins MyD88 to activate the 
NF-κB signaling pathway, eventually resulting in the produc-
tion of inflammatory cytokines (including TNF-α, IL-1β, 
and IL-6) and the induction of cell apoptosis [47]. Previous 
study has proven that LPS mediated broiler immunopatho-
logical alterations of liver through TLR4 signaling pathway 
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[16]. Our present study also found that supplementing Ma-
cleaya cordata IA to the diet alleviated LPS-induced increases 
in hepatic MyD88 and NF-κB mRNA expressions, manifest-
ing that Macleaya cordata IA might suppress LPS-induced 
hepatic inflammatory response through inhibiting TLR4/
MyD88/NF-κB signaling pathway. Moreover, the sensitiza-
tion of the NF-κB signaling pathway is further involved in 
the expression of the NLRP3 inflammasome [48]. The NLRP3 
inflammasome is a multiprotein complex that plays a pivotal 
role in regulating the innate immune system and inflamma-
tory signaling [47]. Its activation will trigger capase-1-mediated 
cleavage of IL-1β and IL-18 precursors and cause inflammatory 
cell death called pyroptosis [49,50]. Consistently, supplement-
ing Macleaya cordata IA to the diet alleviated LPS-induced 
increases in hepatic NLRP3 concentration and caspase-1 ac-
tivity in the present study. On the other hand, Macleaya cordata 
IA addition down-regulated the gene expressions of Bax and 
Bax/Bcl-2 ratio in this study. Generally, the pro-apoptotic 
protein expressed by Bax gene destroys the outer membrane 
integrity of mitochondria, thus releasing the internal cyto-
chrome C to the cytosol to activate caspases [51]. By contrast, 
the anti-apoptotic protein Bcl-2, presented in the outer mi-
tochondrial membrane, can combine with Bax protein to 
form a dimer to neutralize the pro-apoptotic effect of Bax 
[52]. The increased Bax/Bcl-2 ratio will up-regulate cleavage 
of caspase-3 and caspase-1, effector caspases initiating the 
process of cell apoptosis and pyroptosis, respectively [53,54]. 
Likewise, supplementing IA to the diet alleviated LPS-induced 
increases in hepatic caspase-3 activity to level observed in 
the CON broilers. The aforementioned findings indicated 
that Macleaya cordata IA has the ability to inhibit hepatic in-
flammatory injury caused by LPS through inactivating TLR4/
MyD88/NF-κB signaling pathway-mediated cell apoptosis 
and pyroptosis.

CONCLUSION

To sum up, dietary addition of 0.6 mg/kg Macleaya cordata IA 
could alleviate LPS-induced liver injury through enhancing 
immune function and suppressing hepatic inflammatory 
response via TLR4/MyD88/NF-κB signaling pathway.
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