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Comparative genetic analysis of frequentist and Bayesian  
approach for reproduction, production and life time traits  
showing favourable association of age at first calving  
in Tharparkar cattle

Nistha Yadav1, Sabyasachi Mukherjee1,*, and Anupama Mukherjee1,* 

Objective: The present study was aimed primarily for estimating various genetic parameters 
(heritability, genetic correlations) of reproduction (age at first calving [AFC], first service 
period [FSP]); production (first lactation milk, solid-not fat, and fat yield) and lifetime 
traits (lifetime milk yield, productive life [PL], herd life [HL]) in Tharparkar cattle to check 
the association of reproduction traits with lifetime traits through two different methods 
(Frequentist and Bayesian) for comparative purpose. 
Methods: Animal breeding data of Tharparkar cattle (n = 964) collected from Livestock 
farm unit of ICAR-NDRI Karnal for the period 1990 through 2019 were analyzed using a 
Frequentist least squares maximum likelihood method (LSML; Harvey, 1990) and a multi-
trait Bayesian-Gibbs sampler approach (MTGSAM) for genetic correlations estimation of 
all the traits. Estimated breeding values of sires was obtained by BLUP and Bayesian analysis 
for the production traits.
Results: Heritability estimates of most of the traits were medium to high with the LSML 
(0.20±0.44 to 0.49±0.71) and Bayesian approach (0.24±0.009 to 0.61±0.017), respectively. 
However, more reliable estimates were obtained using the Bayesian technique. A higher 
heritability estimate was obtained for AFC (0.61±0.017) followed by first lactation fat yield, 
first lactation solid-not fat yield, FSP, first lactation milk yield (FLMY), PL (0.60±0.013, 
0.60±0.006, 0.57±0.024, 0.57±0.020, 0.42±0.025); while a lower estimate for HL (0.38±0.034) 
by MTGSAM approach. Genetic and phenotypic correlations were negative for AFC-PL, 
AFC-HL, FSP-PL, and FSP-HL (–0.59±0.19, –0.59±0.24, –0.38±0.101 and –0.34±0.076) by 
the multi-trait Bayesian analysis. 
Conclusion: Breed and traits of economic importance are important for selection decisions 
to ensure genetic gain in cattle breeding programs. Favourable genetic and phenotypic 
correlations of AFC with production and lifetime traits compared to that of FSP indicated 
better scope of AFC for indirect selection of life-time traits at an early age. This also indicated 
that the present Tharparkar cattle herd had sufficient genetic diversity through the selection 
of AFC for the improvement of first lactation production and lifetime traits.

Keywords: Bayesian Approach; Lifetime Traits; Least Squares Maximum Likelihood Method 
(LSML); Production; Reproduction; Tharparkar 

INTRODUCTION

Tharparkar, the lyre-horned dual-purpose zebu cattle with its origin in the Tharparkar 
district of the Sindh province, Pakistan is currently one of the most well-established cattle 
in Indian and the world. The breed is more famed as a dairy animal owing to its desirable 
attributes of high production capacity and climate resilience under hot arid unfavorable 
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environmental conditions [1]. The breed has been found to 
maintain a higher level of production concomitant with 
low reduction in feed intake, growth rate, and reproductive 
functions even in conditions of heat stress [2], harsh climate, 
scarce feed, and fodder inputs, among others. Studies based 
on phenotypic performance of reproductive traits with pro-
duction potential of Tharparkar cows and expression of 
reproductive markers viz. anti-Mullerian hormone are im-
portant to enhance future production and significant for 
selection in any breeding program of zebu cattle [3]. However, 
most of the economically important traits are still unexplored 
in this breed while comparing the precision of estimates 
with traditional and Bayesian methods. 
 Economic dairy production rests upon superior production 
and efficient reproduction of the herd along with sufficient 
diversity. The information on genetic parameters like herita-
bility, repeatability and genetic correlation is a prerequisite 
for making efficient selection strategies. Desirable selection 
in livestock can be done by either prediction equations or by 
considering association studies of early expressed traits viz. 
age at first calving (AFC), first service period (FSP), first dry 
period, first calving interval which affects production in long 
term viz. First lactation milk yield (FLMY), peak milk yield, 
lactation length (LL), dry period, herd life (HL), productive 
life (PL), breeding efficiency, and lifetime milk yield (LTMY). 
The economics of these dairy traits are directly affected by 
reproduction and herd survival as significant association 
was observed in different cattle and buffalo breeds [4-6]. A 
combined study including phenotypic records of growth 
from birth to regular interval and livability with production 
till disposal in herd gives a direction to genetic improvement 
on phenotypic scale [7,8]. 
 Most of the economic traits in dairy animals are quantita-
tive in nature and follows non-Gaussian distribution with 
continuous values having wide range of variability determined 
by the genetic makeup of the individuals and the environ-
ment in which they are reared. As such maximal production 
is achieved when animals are sound in early expressed traits 
of the fertility cycle. Consequently, reproductive manage-
ment enables improvement in herd performance in terms of 
production (milk yield, composition, and stayability) and 
functional (reproduction, growth, digestion, and ailments 
issues) traits. Progress in future fertility and long-term sur-
vival of high-producing cows aids in balanced selection and 
culling decision-making systems [9]. Hence, it is imperative 
to combine reproductive management strategies with new 
technologies that are user-friendly and employs versatile 
models to simulate production ability for consultation in 
dairy herds [10]. 
 Sample size is a prime consideration in conducting any 
statistical analysis. The Bayesian approach has no such prior 
assumption about sample size as it assures higher coverage, 

more powerful estimates and robust results even in small 
sample populations [11]. It was reported that when the sample 
size is equal or larger than the number of parameters either 
Frequentist or Bayesian estimation can be applicable. How-
ever, for limited sampling Bayesian approach is more reliable 
alternative which provides posterior distribution, credible 
intervals, convergence diagnostics and graphical visualization 
for validation [12]. The Markov chain Monte Carlo (MCMC) 
method of Gibbs sampling (GS) is a particular Bayesian ap-
proach increasingly used in animal breeding to estimate 
model parameters by generating random variables from full 
conditional posterior distributions. This approach offers a 
more natural marginalization process based on having an 
accurate prior probability to deal with nuisance parameters 
[13]. 
 Efficient selection strategies used by breeders are based on 
variability of data distribution for getting improvement in 
desired characters. The application of advance methods of 
genetic analysis provides a crucial tool for improving the 
production traits in indigenous milch breeds and helps econ-
omize the herd productivity. Quantitative analysis for viable 
traits of these economically important breeds is a complex 
phenomenon owing to continuous scale on phenotypic as 
well as genotypic line [14]. The likelihood-based methods, 
such as maximum likelihood (ML), restricted maximum 
likelihood (REML), least square maximum likelihood (LSML) 
and linear regression techniques are conventionally used for 
animal breeding data analysis, where outcome simply equals 
the linear predictor [15]. These methods are useful and effi-
cient when samples have linearity and normal distribution. 
However, the approximations like assumption of normal 
distribution, defined confidence intervals are not found in 
the sample population most of the time; moreover, these 
methods lack accuracy and require huge memory space. The 
Bayesian estimate provides a better alternative to overcome 
these issues by employing probability intervals for estimation 
of genetic parameters. Application of Bayesian approach to 
solve problems in breeding is a novel idea which provides a 
general, coherent methodology with inbuilt self-evident 
system. Bayesian paradigm introduced knowledge of priori 
distribution about parameters of interest for getting precise 
estimates of posterior probabilities and credible interval 
regions (95% probability in a fixed interval) for reliable pa-
rameters by various convergences diagnostic [16]. While 
confidence interval of the classical approach in similar ob-
servations introduces more errors in parameter estimation 
[17]. The Bayesian methods also enable estimation within 
a single bivariate analysis while providing flexibility to define 
model for each trait with homogenous or heterogeneous 
contemporaries, which is not possible with the likelihood 
methods. The improvement of ability to interpret uncer-
tainty in sequential estimation of posterior distributions is 
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perhaps the greatest benefit of Bayesian methods [18]. 
 It is important to know the effectiveness of Bayesian ap-
proach vis-a-vis other methods for genetic evaluation and 
ranking of sires based on the 1st lactation traits. To our knowl-
edge, no studies have been carried out in the Tharparkar 
cattle for comparative genetic evaluation using the frequentist 
LSML approach and more advanced Bayesian multi-trait 
Gibbs sampling animal model (MTGSAM). This comparison 
between these two methods (conventional v/s advance) to 
check their efficacy with a finite sample size of this Indigenous 
milk breed was one of the purposes of the present study. 
Bivariate analysis for the estimation of genetic parameters 
has not been attempted with heterogeneous contemporary 
groups of affecting factors for AFC and FSP in the Tharparkar 
breed. Therefore, present study was planned to obtain com-
parative analytical evidence using Frequentist and Bayesian 
approaches while considering reproduction, production and 
lifetime traits as selection criteria and to estimate the breeding 
values of sires for milk production and composition traits in 
Tharparkar cattle.

MATERIALS AND METHODS

Data structure 
All the reproduction, milk parameters (production and com-
position) and lifetime traits were generated from history-cum-
pedigree sheet and production records of 964 Tharparkar 
cows over a period of 30 years (1990 through 2019), main-
tained at ICAR-NDRI Karnal, Haryana. Data optimization 
was performed by normalization and standardization meth-
ods after compilation, editing and discarding the suboptimal 
records. Outlier animals from the standardizing criteria viz. 
LL less than average days (<100 days), milk yield less than 
average yield (<500 kg) and fat percent less than standard 
(<3.5%) were expelled for final analyzable samples in our 
study. Non-genetic factors such as period, season of calving/
birth and AFC as covariate were classified into different 
fixed sub-classes and animal/sire was considered as random 
genetic factor to assess the effect on the considered traits in 
the present study. The year of calving/birth had been classi-
fied into four seasons e.g. summer (April to June), rainy (July 
to September), autumn (October to November) and winter 
(December to March) based on recorded and analyzed me-
teorological factors at CSSRI, Karnal, India for temperature 
fluctuations, relative humidity, prevalent geo-climatic condi-
tions. The region is at an altitude of 235 to 252 meters from 
the sea level, latitude 29.43°N and longitude 77.2°E with 
10°C to 45°C temperature range.
 Whole data had been classified into six and seven periods 
by taking five years in a group based on the year of calving 
(1990 through 2019) and year of birth (1986 through 2019), 
respectively. AFC was taken as covariate for all traits except 

for AFC as a continuous trait. Covariate AFC has been clas-
sified in eleven classes based on formula given by Sturges [19] 
as: 
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Where, N = No. of observations; range = maximum – minimum 158 
 Where, N = No. of observations; range = maximum – 
minimum

Considered traits
Reproduction traits include calving and service parameters 
which affect per animal production and survival in herd. 
Production traits include traits of economic importance 
such as milk production and composition traits which have 
direct effect on profitability of dairy sector as well as individual 
farmer’s income and livelihood. Lifetime traits include PL 
span of animals which reflect survival and longevity in herd. 
 Reproduction traits: 

• Age at first calving
• First service period

 Production traits: 
• First lactation 305 days / Less milk yield (FL305MY)
• Solid-not fat yield 
• Fat yield

 Lifetime traits: 
• Lifetime milk yield
• Productive life
• Herd life

Statistical analysis
Descriptive statistics of considered quantitative traits were 
estimated by using R software (version 4.2.0) [20]. Data has 
been statistically analyzed by using LSML and Bayesian ap-
proach by using suitable software packages such as Harvey 
[21] and BLUPF90 family [22], respectively. Sire evaluation 
taking the production traits was also carried out after esti-
mation of breeding value by both the methods using Model 
8 under Harvey [21] and BLUP animal model under BLUPF90 
package. 
 LSML approach: The effects of genetic (sire) and non-ge-
netic factors (periods, season of birth/calving and AFC) were 
assessed by LSML method [21]. 
 Bayesian approach: The (co)variance component and ge-
netic parameters viz. correlations and heritability estimates 
were calculated in terms of posterior densities by using mul-
tiple iterative cycles of Markov chains for GS. This Bayes 
theorem has given joint probability of priori and likelihood 
values from data distribution. More uniform environmental 
conditions increase the heritability and vice-versa. Data were 
subjected to analysis by using software packages among the 
list of BLUPF90 family. RENUMF90 software was a prelimi-



www.animbiosci.org  1809

Yadav et al (2023) Anim Biosci 36:1806-1820

nary in this series which generated a renumbered file by 
removing alpha-numeric values. Standardized (Gaussian 
distribution) Gibbs samples from GIBBS2F90 software gives 
binary results. POSTGIBBSF90 package was used to read 
these binary results and present them in a readable format. 
Breeding Values were estimated by using BLUPF90 software. 
Results were based on various standardizing criteria such as 
Monte Carlo error (MCE) for standard deviation (SD) for 
accuracy, constant trace plot and Histogram. Proper stan-
dardization of Gibbs sampler can be ensured by visualization 
of stable and normalized marginal posteriori [23]. The final 
POSTGIBBSF90 estimates by the Bayesian approach with a 
multi-trait animal model used the following mixed model 
equation: 

 Y = Xβ+Zµ+e

 Where, 
Y = (n×1) Vector of observed dependent variables, viz. 

reproduction, production and lifetime traits
X = Incidence matrix (vector of 1’s) relating the fixed effects 

to the individuals
β = (p×1) Vector of fixed effects (year, season)
Z = Incidence matrix relating the random effects to each 

individual
µ = (q×1) Vector of random effects (all animals in the 

pedigree file)
e = Random error, normally distributed (mean = 0, resid-

ual variance = σ2
e)

 Following models were used for various reproduction, 
production, and lifetime traits:

 For FSP, FLMY, FLFY, FLSNFY, LTMY, PL, and HL:

 Yijklm = µ+Pi+Snj+Agk(cov)+Sl+eijklm

 Where,
Yijklm = Observation of mth animal having lth sire effect, 

kth age group at first calving, calved in jth season, ith 
period

µ = Overall mean
Pi = Effect of ith period of calving (i = 1 to 6)
Snj = Effect of jth season of calving (j = 1,2,3,4)
Agk(cov) = Effect of kth age group in first calving (k = 1 

to 7), AFC will be taken as covariate
Sl = Effect of lth sire (l = 8)
eijklm = Random error, N (0, σ2

e)

For AFC:

 Yilkl = µ+Pi+Snj+Sk+eijkl

 Where,
Yijkl = Observation of lth animal calved in ith period, jth 

season, kth sire 
µ = Overall mean
Pi = Effect of ith period of birth (i = 1 to 7)
Snj = Effect of jth season of birth (j = 1,2,3,4)
Sk = Effect of kth sire 
eijkl = Random error, N (0, σ2

e)

 Standardization of Gibbs sampler: The Gibbs sampler was 
used to generate random samples from Bayes theorem with 
conditional joint probability by successive sampling resulted 
in marginal posterior distribution. Estimates generated in 
several standardized parameters such as iterative, burn in 
and thinning cycles were compared to get the representative 
samples for the desired convergence. First non-converging 
samples were discarded as burn-in. Burn-in and cycles of 
thinning intervals in each sampling round generate final ef-
fective samples for considered traits. MTGSAM approach 
was considered to analyze genetic and phenotypic correla-
tion between all reproduction, production and lifetime traits 
in Tharparkar. For this a total of 2,900 Gibbs samples were 
finalized to get standardized sampling parameters after vari-
ous trials while each 10th cycles to be stored after discarding 
initial 1,000 cycles from overall sample chain of 30,000 for 
all considered traits in Tharparkar.

RESULTS

Descriptive statistic
The descriptive statistics viz. mean±standard error (SE), co-
efficient of variation, SD, and minimum, maximum ranges 
was estimated to generate a summary of the present data set 
(Table 1). These initial mean values can be used as priori dis-
tribution in Bayesian statistics for considered data distribution 
in single or multi-trait analysis [24]. Coefficient values ranged 
between 14.62 (AFC) and 63.50 (FSP), which indicated less 
and more variability for respective traits in the sampled Thar-
parkar population (Table 1). 

Least-square mean and affecting factors
Least-square Means and effect of various genetic and non-
genetic factors were estimated by the LSML (Harvey [21]) 
approach for Tharparkar cattle (Table 2). The average AFC 
in our herd was found as 1,093.74±31.83 days. Season has 
significant effect at p<0.01 while other nongenetic and genetic 
factors were found to be non-significant. This might be due 
to differences in feeding, managemental practice and envi-
ronmental condition in different seasons. Average FSP, FLMY, 
first lactation solid not fat yield, first lactation fat yield, LTMY, 
production life (PL) and HL were found as 152.49±17.25 
days, 1,777.95±211.60 kg, 2,962.03±186.61 kg, 1,633.76± 
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105.86 kg, 7,875.34±441.11 kg, 5,373.92±94.63 days and 
6,665.18±92.84 days respectively (Table 2). All non-genetic 
and genetic factors were found to be non-significant for FSP, 
FLMY, and FLSNFY. This indicates that these traits are not 
affected by considered factors or might be due to small sam-
pling structure. Period of calving has significant effect for 
FLFY (p<0.01) and LTMY (p<0.05) and other non-genetic 
factors were found to be non-significant while genetic factor 
was only significant for later trait. All non-genetic and genetic 
factors were found to be non-significant for PL and HL in 
this data set. Covariate AFC had non-significant effect on all 
considered traits.

Bayesian posterior densities and genetic evaluation
The results for variance component and heritability esti-
mates obtained through GS are presented in Table 3 and 
Figure 1, 2 and 3. Results were subjected for comparison 
with conventional method (LSML v/s Bayesian) to generalize 
this application in animal breeding (Table 4). 
 Higher variances and variability was noticed for LTMY 
among all considered economic traits in the present work 
(Table 3). Highest phenotypic variance of LTMY (12,187,000) 
was noticed followed by comparative lower values for HL 

and PL (660,240 and 654,990) subsequently. Overall genetic 
variance of HL was the lowest among lifetime traits. Highest 
phenotypic variability and wide range (3,791,300±175,930) 
was noticed for LTMY followed by environmental and ge-
netic deviations (3,157,800±112,830 and 2,201,100±152,470). 
Less variability was noticed for genetic deviation of HL 
(118,870±15,297) among lifetime traits. Genetic variability 
was higher for HL as compared to PL instead of higher phe-
notypic variability of HL.
 Higher phenotypic variance was noticed for all consid-
ered traits among sources of variances for Tharparkar cattle 
(Table 3). The total phenotypic variances (35,734) among re-
production traits were higher for AFC followed by genetic 
and environmental variances (21,689 and 14,045). The esti-
mates of variability and range of posterior densities among 
reproduction traits were higher and wide for phenotypic 
variation of FSP (10,856±1,448.4) followed by genetic and 
environmental variation (8,456.1±1,192.2 and 4,975.8±406.44). 
 Variance and variability components were higher for pro-
duction traits as compared to reproduction traits in present 
study (Table 3). Higher phenotypic variance was noticed for 
FLMY (4,453,900) among all variances of production traits 
followed by genetic and environmental variances (2,589,900 

Table 1. Descriptive statistics

Parameters Mean±SE CV SD Minimum Maximum

Reproduction traits
AFC 1,227.73 ± 24.88 14.62 179.45 879 1,554
FSP 148.37 ± 13.06 63.50 94.21 41 374

Production traits
FLMY 1,765.44 ± 108.89 39.49 697.26 506 3,149.1
FLFY 2,701.79 ± 63.93 15.15 409.36 2,029.83 3,579.81
FLSNFY 1,482.38 ± 42.01 18.15 269.02 952.05 2,012.39

Life time traits
LTMY 5,374.76 ± 455.01 58.04 3119.39 701 13,433.6
PL 1,292.72 ± 93.34 49.50 639.90 492 3,010
HL 2,555.11 ± 95.63 25.66 655.63 1,650 4,233

SE, standard error; CV, coefficient of variation (%); SD, standard deviation; AFC, age at first calving; FSP, first service period; FLMY, first lactation milk yield; 
FLFY, first lactation fat yield; FLSNFY, first lactation solid-not fat yield; LTMY, lifetime milk yield; PL, productive life; HL, herd life; N, no. of records. 

Table 2. Least-squares means 

Traits LSM±SE Effect of period Effect of season Effect of covariate Sire

AFC (d) 1,093.74 ± 31.83 * *** * *
FSP (d) 152.49 ± 17.25 * * * *
FLMY (kg) 1,777.95 ± 211.60 * * * *
FLSNFY (kg) 2,962.03 ± 186.61 * * * *
FLFY (kg) 1,633.76 ± 105.86 *** * * *
LTMY (kg) 7,875.39 ± 845.09 ** * * **
PL (d) 5,373.64 ± 186.15 * * * *
HL (d) 6,665.89 ± 189.19 * * * *

LSM, least squares means; SE, standard error; AFC, age at first calving; FSP, first service period; FLMY, first lactation milk yield; FLSNFY, first lactation sol-
id-not fat yield; FLFY, first lactation fat yield; LTMY, lifetime milk yield; PL, productive life; HL, herd life.
* Non-significant; ** p < 0.05, *** p < 0.01.
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and 1,864,000). Followed by positive phenotypic variances 
(4,702,600 and 1,345,100), genetic (2,831,800 and 811,450) 
and environmental (1,870,800 and 533,640) variances of 
FLFY and FLSNFY. Higher variability was noticed for phe-
notypic variation of FLMY (2,617,600±408,740) subsequently 
for FLFY and FLSNFY (2,125,000±211,240 and 577,850± 
64,678). 
 Marginal posterior mean for variance component and 
heritability are more informative. Heritability estimates were 
found as 0.61±0.017 and 0.57±0.024 for AFC and FSP; 0.57± 
0.020, 0.60±0.013, and 0.60±0.006 for FLMY, first lactation 
solid-not fat yield and first Lactation Fat yield; 0.24±0.009, 
0.42±0.025, and 0.38±0.034 for LTMY, PL, and HL respec-

tively (Tables 3 and 4). 
 Credible interval: Highest phenotypic, genetic, and envi-
ronmental variance and variability was noticed for LTMY, 
while Lowest for FSP from our study (Table 3). The credible 
intervals or highest posterior density (HPD) region was de-
picted as lower and higher range and considered as a measure 
of reliability, described as the interval range which includes 
95% of samples for all estimates of (co)variance components 
and genetic parameters (Table 3). Bayesian analyses for 
marginal posterior densities of the genetic parameters with 
accuracy by visualizing the errors [25]. 
 Effective iterative trials: The number of effective samples 
varied from 50 to 233, 35 to 571 and 19.5 to 783 for repro-

Table 3. Descriptive statistics for variance components and heritability estimates by MTGSAM approach for reproduction, production and lifetime 
traits 

Parameters Mean Mode Median SD
HPD (95%) Effective 

size MCESD Geweke 
diagnosticLower Upper

Reproduction traits
AFC σ2

g 21,689 19,541 20,490 8,667.5 7,404.0 40,300 145.8 717.70 0.16
σ2

p 35,734 29,424 34,270 9,305.5 2,0067 53,420 233.1 609.28 0.06
σ2

e 14,045 12,486 12,710 7,566.5 2,056.0 28,170 149.5 618.54 –0.10
h2 0.60712 0.58322 0.62218 0.17126 0.29012 0.93540 101.2 0.017 0.17

FSP σ2
g 10,175 4,769.9 7,830.0 8,456.1 426.70 25,580 50.3 1,192.2 –0.04

σ2
p 17,265 9,600.6 14,134 10,856 4548.0 38,220 56.2 1,448.4 0.03

σ2
e 7,089.9 4,144.7 5,670.0 4,975.8 849.60 17,440 149.8 406.44 0.15

h2 0.56587 0.61682 0.57724 0.18919 0.21388 0.91627 61.6 0.024 –0.30
Production traits

FLMY σ2
g 2,589,900 1,022,200 2,100,000 1,848,700 345,500 6,414,000 35.2 311,430 –0.27

σ2
p 4,453,900 2,220,200 3,801,000 2,617,600 1,088,100 9,651,000 41.0 408,740 –0.24

σ2
e 1,864,000 866,080 1,561,000 1,228,900 231,400 4308,000 79.2 138,050 –0.10

h2 0.56706 0.57248 0.57226 0.15550 0.26959 0.85375 61.5 0.0198 –0.19
FLSNFY σ2

g 811,450 489,010 726,500 421,260 150,300 1,650,000 57.1 55,734 –0.24
σ2

p 1,345,100 877,040 1,220,000 577,850 455,600 2,456,300 79.8 64,678 –0.25
σ2

e 533,640 373,470 469,300 288,580 116,700 1,134,000 206.4 20,083 –0.15
h2 0.59619 0.63443 0.60330 0.14069 0.33115 0.86198 116.0 0.01306 –0.13

FLFY σ2
g 2,831,800 1,789,600 251,9000 1,495,000 650,700 5,689,000 102.1 147,910 –0.15

σ2
p 4,702,600 3,531,400 426,0000 2,125,000 1,604,800 8,692,000 101.2 211,240 –0.16

σ2
e 1,870,800 1,305,400 1,635,000 1,067,800 401,100 3,989,000 185.2 78,457 –0.10

h2 0.59850 0.61924 0.60614 0.13709 0.33256 0.84968 570.5 0.00574 –0.09
Life time traits

LTMY σ2
g 2,956,500 2,077,100 2,554,000 2,201,100 152,300 6,249,000 208.2 152,470 –0.02

σ2
p 12,187,000 9,603,500 11,499,000 3,791,300 6,478,000 19,506,000 463.9 175,930 0.13

σ2
e 9,230,900 8,297,200 8,699,000 3,157,800 3,775,000 15,550,000 782.5 112,830 0.17

h2 0.2406 0.25031 0.2262 0.1206 0.0366 0.4703 191.5 0.0087 –0.18
PL σ2

g 276,470 240,740 256,300 144,640 34,270 552,800 52.1 20,038 0.08
σ2

p 654,990 530,860 621,600 190,260 349,800 1,056,300 229.9 12,545 0.14
σ2

e 378,520 277,460 358,700 158,040 105,200 684,200 106.6 15,300 0.09
h2 0.42039 0.44293 0.41398 0.17009 0.09959 0.72977 47.7 0.02463 –0.01

HL σ2
g 247,420 212,570 223,500 118,870 74,730 466,300 60.3 15,297 –0.02

σ2
p 660,240 546,790 626,100 191,180 343,500 1,025,700 118.8 17,535 0.26

σ2
e 412,820 327,950 389,900 174,190 127,400 788,300 28.1 32,844 0.30

h2 0.38241 0.34443 0.36557 0.15157 0.12812 0.67899 19.5 0.0344 –0.21

MTGSAM, multi-trait Bayesian-Gibbs sampler approach; SD, standard deviation; HPD(95%), higher posterior density 95%; ; MCESD, Monte Carlo error for SD; 
σ2

g, additive genetic variance; σ2
p, total phenotypic variance; σ2

e, residual variance; h2, heritability; AFC, age at first calving; FSP, first service period; FLMY, 
first lactation milk yield; FLFY, first lactation fat yield; FLSNFY, first lactation solid-not fat yield; LTMY, lifetime milk yield; PL, productive life; HL, herd life.
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duction, production and lifetime traits respectively (Table 3). 
Sufficient estimates for all measures of central tendency and 
the HPD region at 95% credible interval for each parameter 
were obtained with these generated iterative sample sizes. 
 Geweke diagnostic: Geweke diagnostic values were rang-
ing between –0.30 to 0.30 for the traits under consideration 
in the present study (reproduction traits: –0.30 to 0.17, pro-
duction traits: –0.24 to –0.10, lifetime traits: –0.21 to 0.30) in 
Tharparkar cattle (Table 3). Geweke’s diagnostics were in a 
narrow range (near one) for production traits, followed by 
the lifetime and reproduction traits, which indicated high to 
low convergence, respectively. 

Visualization by trace plot and histogram
Data visualization is another advantageous feature of Bayesian 
approach which enables accuracy, automation, and cross 
validation of statistical analysis. Statistically analyzed genetic 
parameters were visualized and validated by trace plot and 
histogram of the heritability estimate (Figures 1, 2, and 3).

Comparative heritability estimate from Harvey and 
Bayesian methods
The heritability estimates using the LSML and Bayesian ap-
proach were summarized to compare accuracy (Table 4). 
The heritability values ranged from medium to higher (0.20± 
0.44 to 0.49±0.71 and 0.24±0.009 to 0.61±0.017) by the LSML 
and Bayesian analysis, respectively (Table 4). 
 Heritability estimates were higher ranging between 0.24± 
0.009 to 0.61±0.017 by the MTGSAM analysis (Tables 3, 4, 

and 6). The highest heritability was noticed for the AFC 
(0.61±0.017) followed by FLFY, FLSNFY, FSP, FLMY, PL, 
HL (0.60±0.013, 0.60±0.006, 0.57±0.024, 0.57±0.020, 0.42± 
0.025, 0.38±0.034) and the lowest for the LTMY (0.24±0.009) 
in Tharparkar cattle. 

Correlation component between reproduction, 
production and lifetime traits
Genetic and phenotypic correlations estimated using the 
LSML technique wss presented in Table 5. Negative (–0.0037 
to –0.3821) and positive (0.0330 to 0.9622) correlations were 
obtained for various trait combinations (Table 5). Positive 
genetic and phenotypic correlations were high for FLFY-
FLSNFY followed by high to moderate for FLMY-FLFY, 
FLMY-FLSNFY; slightly higher for FSP-FLSNFY, FSP-FLFY; 
low for FSP-FLMY FSP-AFC and lowest for AFC-PL in our 
study. Negative genetic and phenotypic correlations were 
moderate for FSP-LTMY, FSP-PL, AFC-FLFY, PL-FLSNFY, 
PL-FLFY; low for AFC-FLSNFY, AFC-FLMY, AFC-LTMY, 
PL-FLMY, LTMY-FLFY and the least for LTMY-FLSNFY 
in our study.
 Genetic and phenotypic correlations were estimated using 
Gibbs Sampling with multi-trait Animal model (MTGSAM) 
from Bayesian analysis (Table 6). These results were useful 
for the interpretation and genetic improvement of the corre-
lated traits of reproductive and productive importance by 
indirect selection in Tharparkar cattle. Correlation compo-
nent was negative for AFC (moderate to high: –0.33±0.029 
to –0.59±0.24) and FSP (low to moderate: –0.04±0.041 to 

Figure 1. Plotting of heritability estimate by trace plot and histogram (a) age at first calving, (b) first service period.
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–0.38±0.101) with lifetime traits (PL and HL), while other 
traits were positively correlated in this study (Table 6). High 
genetic correlation was observed for FLFY-FLSNFY (0.99± 
0.0005) followed by high to moderate for PL-HL, FLMY-
FLSNFY, FLMY-FLFY, AFC-FLSNFY, AFC-FLFY (0.95± 
0.0032, 0.93±0.007, 0.92±0.007, 0.85±0.007, 0.80±0.008); 
medium for AFC-FLMY, FSP-FLFY, FSP-FLSNFY, FSP-
FLMY (0.68±0.018, 0.65±0.074, 0.63±0.075, 0.59±0.056); 
slightly higher for FLSNFY-PL, FLFY-PL, AFC-FSP, FLSNFY-
HL, FLFY-HL, FLMY-HL (0.35±0.091, 0.33±0.093, 0.32± 
0.050, 0.26±0.121, 0.25±0.120, 0.23±0.117) and the least for 
FLMY-PL (0.13±0.133), while it was negative for AFC-PL, 
AFC-HL, FSP-PL and FSP-HL (–0.59±0.19, –0.59±0.24, 
–0.38±0.101 and –0.34±0.076) in our study. Phenotypic cor-
relation was high for FLSNFY-FLFY (0.99±0.0003), followed 
by high to moderate for HL-PL, FLSNFY-FLMY, FLFY-FLMY, 
FLSNFY-AFC, FLFY-AFC, FLMY-AFC (0.96±0.0032, 0.93± 
0.006, 0.92±0.006, 0.87±0.004, 0.85±0.005, 0.77±0.013); me-
dium for FLSNFY-FSP, FLFY-FSP, FLMY-FSP, FSP-AFC 
(0.64±0.037, 0.64±0.036, 0.54±0.049, 0.46±0.037); slightly 

higher for FLMY-HL, FLSNFY-PL, PL-FLFY, HL-FLFY, HL-
FLSNFY (0.25±0.047, 0.24±0.0553, 0.23±0.0691, 0.23±0.0525, 
0.23±0.0488) and the least for PL-FLMY combine (0.19± 
0.054), while it was negative for AFC-PL, AFC-HL, FSP-PL 
and FSP-HL (–0.33±0.029, –0.21±0.029, –0.16±0.067 and 
–0.04±0.041), respectively in the present study. 

Estimation of breeding value
To ensure the dissemination of superior germplasm from 
elite bulls estimated breeding values (EBVs) were calculated 
for sires by using both approaches; the Frequentist least squares 
method and Bayesian application using animal model. Sires 
having more than three progenies were considered in this 
study. The EBVs of Tharparkar sires for production traits 
were interpreted for effectiveness of sire evaluation (Table 7).

DISCUSSION 

Inference about least squares mean and various factors 
included in the models 

Figure 2. Plotting of heritability estimate by trace plot and histogram (a) first lactation milk yield, (b) first lactation solid-not fat (SNF) yield, (c) first 
lactation fat yield.
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AFC of the Tharparkar cattle in our study was less, indicat-
ing the animals of ICAR-NDRI herd had a better reproductive 
potential, compared to AFC estimates of Tharparkar cattle 
reported earlier 1,876.17±40.66 [26], 1,821±37 [27], and 
1,769.07±29.80 [28]. The effects of the period and season of 
birth on the AFC in the Tharparkar was similar to an earlier 
report [26]. The estimated value of FSP of Tharparkar cattle 
in our study resembled previous reports 152.04±4.58 [26], 
132±9 [29], and 151±11 days [30], respectively, and differed 
with the result of Mishra et al [28] with 117.53±2.39 days. 
The effect of period of calving was not in agreement with 
previous research [26,29,30] as they found it significant on 

FSP. Average FLMY in the Tharparkar was less in the present 
study than that of reported earlier (1,822.65±70.2 kg) [31]; 
however, higher than that of reported at 1,019±20 kg [32]; 
and similar to another report with 1,618±70 kg [33]. While 
the effect of season on FLMY was similar to our study, the 
effect of period on FLMY was unlike the previous results 
[32,33]. The estimates and the factors affecting the LTMY in 
the Tharparkar cattle in this study was also similar to earlier 
findings with 8,013.07±322.08 kg [34]. The estimates for PL 
and HL in Tharparkar cattle were found to be in proximity 
with the results of Sharma and Singh [35] with 1,460.00 and 
2,657.2 days, respectively; however, were different with the 

Figure 3. Plotting of heritability estimate by trace plot and histogram (a) lifetime milk yield, (b) productive life, (c) herd life.
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findings of Gahlot [36] with 1,867.34±96.82 and 3,540.57± 
29.74 days, respectively. The estimate of HL in the Tharparkar 
cattle was higher compared to earlier reports of Kumar [34], 
Pirzada [37], and Choudhary et al [38]) with 3,240±172, 
2,884.86±49.67 and 3,080.55 days respectively. All the genet-
ic and the non-genetic factors had a similar influence on the 
PL and HL in Tharparkar cattle as reported by Sharma and 
Singh, and Pirzada [35,37]. These results indicated that the 
NDRI Tharparkar herd is thriving well in terms of produc-

tion and survival capacity presently and has the possibility of 
continuing under changing climatic conditions.

Variance components
In the present study, more informativeness of the posterior 
estimates from the mixed model multi-trait Bayesian analysis 
technique explains the 95% HPD, SD, and convergence cri-
teria in the Tharparkar (Tables 3 and 6). Our results revealed 
the marginalization of data by converging them to a point 
estimate by generated effective samples of distinct iterations 
utilizing the Bayesian technique, which was similar to boot-
strapping phenomenon that leads to normalization even with 
finite or small sample size [39]. 
 Moderate to higher genetic variance as compared to en-
vironmental variance for AFC and FSP indicated lesser 
environmental effect, therefore, having more scope for di-
rect selection in this Tharparkar herd for improving the 
reproductive potential. This can be stabilized towards the 

Table 4. Comparative summary of heritability estimate

Traits LSML Bayesian 

Reproduction traits
AFC 0.20 ± 0.441 0.61 ± 0.017
FSP 0.23 ± 0.568 0.57 ± 0.024 

Production traits
FLMY 0.34 ± 0.605 0.57 ± 0.020
FLSNFY 0.31 ± 0.697 0.60 ± 0.013
FLFY 0.24 ± 0.679 0.60 ± 0.006

Lifetime traits
LTMY 0.25 ± 0.731 0.24 ± 0.009
PL 0.49 ± 0.709 0.42 ± 0.025
HL 0.48 ± 0.705 0.38 ± 0.034

LSML, least squares maximum likelihood; AFC, age at first calving; FSP, 
first service period; FLMY, first lactation milk yield; FLSNFY, first lactation 
solid-not fat yield; FLFY, first lactation fat yield; LTMY, lifetime milk yield; 
PL, productive life; HL, herd life.

Table 5. The posterior mean of genetic (above diagonal), phenotypic (below the diagonal) correlations and heritability estimates (diagonal) for 
traits using LSML approach in Tharparkar 

Traits AFC FSP FLMY FLFY FLSNFY LTMY PL HL

AFC 0.20 ± 0.441 0.1059 –0.0295 –0.1237 –0.0971 –0.0566 0.0330 NA
FSP 0.1042 0.23 ± 0.568 0.1412 0.3284 0.2804 –0.3640 –0.3376 NA
FLMY –0.0750 0.1928 0.34 ± 0.605 0.6710 0.6591 0.1423 –0.0265 NA
FLFY –0.1765 0.2915 0.6397 0.24 ± 0.679 0.9622 –0.0134 –0.2215 NA
FLSNFY –0.1597 0.2956 0.6580 0.9486 0.31 ± 0.697 –0.0037 –0.2009 NA
LTMY –0.0466 –0.3821 0.6580 0.0202 –0.0443 0.25 ± 0.731 NA NA
PL 0.0565 –0.3485 –0.0159 –0.1552 –0.2224 NA 0.49 ± 0.709 NA
HL NA NA NA NA NA NA NA 0.48 ± 0.705

LSML, least squares maximum likelihood; NA, not applicable; AFC, age at first calving; FSP, first service period; FLMY, first lactation milk yield; FLFY, first 
lactation fat yield; FLSNFY, first lactation solid-not fat yield; LTMY, lifetime milk yield; PL, productive life; HL, herd life.

Table 6. The posterior mean of genetic (above diagonal), phenotypic (below the diagonal) correlations and heritability estimates (diagonal) with 
standard error using MTGSAM approach in Tharparkar

Traits AFC FSP FLMY FLFY FLSNFY PL HL

AFC 0.61 ± 0.017 0.32 ± 0.050 0.68 ± 0.018 0.80 ± 0.008 0.85 ± 0.007 –0.59 ± 0.19 –0.59 ± 0.24
FSP 0.46 ± 0.037 0.57 ± 0.024 0.59 ± 0.056 0.65 ± 0.074 0.63 ± 0.075 –0.38 ± 0.101     –0.34 ± 0.076
FLMY 0.77 ± 0.013 0.54 ± 0.049 0.57 ± 0.020 0.92 ± 0.007 0.93 ± 0.007 0.13 ± 0.133 0.23 ± 0.117
FLFY 0.85 ± 0.005 0.64 ± 0.036 0.92 ± 0.006 0.60 ± 0.013 0.99 ± 0.0005 0.33 ± 0.093 0.25 ± 0.120  
FLSNFY 0.87 ± 0.004 0.64 ± 0.037 0.93 ± 0.006 0.99 ± 0.0003 0.60 ± 0.006 0.35 ± 0.091 0.26 ± 0.121
PL -0.33 ± 0.029 -0.16 ± 0.067 0.19 ± 0.054  0.23 ± 0.0691  0.24 ± 0.0553  0.42 ± 0.025 0.95 ± 0.0032
HL -0.21 ± 0.029 -0.04 ± 0.041 0.25 ± 0.047  0.23 ± 0.0525 0.23 ± 0.0488  0.96 ± 0.0032 0.38 ± 0.034

MTGSAM, multi-trait Gibbs sampling animal model; AFC, age at first calving; FSP, first service period; FLMY, first lactation milk yield; FLFY, first lactation fat 
yield; FLSNFY, first lactation solid-not fat yield; PL, productive life; HL, herd life.

Table 7. Effectiveness of sire evaluation

Trait Rank correlation t-calculated df Interpretation

FLMY 0.048 0.12 7 Non-significant
FLSNFY 0.39 1.04
FLFY 0.43 1.17

FLMY, first lactation milk yield; FLSNFY, first lactation solid-not fat yield; 
FLFY, first lactation fat yield.
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desired direction as lesser AFC and FSP are profitable for the 
herd. There is also further scope of selection and improve-
ment for production traits as well due to higher variability as 
compared to reproduction traits. A more disperse pattern of 
variables for FLMY signified a less stabilized population, in-
dicating further scope for selection and genetic improvement 
with this traits, while lesser scope for selection for the FLSNFY 
due to lesser variance and variability. LTMY in the Tharparkar 
cattle had a higher selection scope due to wide variability. 
Among the lifetime traits, the HL had a more diverse range 
in genetic selection which indicated further scope for direc-
tional selection in this Tharparkar herd. Even if the sample 
size was small, higher estimates of the posterior distribution 
in this study were obtained, implying further scope of genetic 
improvement in Tharparkar cattle. 

Posteriori of heritability estimates
Heritability is a dynamic trait as it varies from population to 
population and from environment to environment. Herita-
bility value of various traits was estimated and visualized as 
graphs (Figures 1, 2, and 3) in the multivariate analysis through 
the Bayesian approach (Table 3) in the Tharparkar cattle. 
Good convergence was indicated by the constant trace plot 
and a bell-shaped histogram indicated normalization of the 
data till desired distribution was obtained to get the point 
estimates even more constant and symmetrical for produc-
tion traits as compared to reproduction and lifetime traits 
(Figures 1, 2, and 3). 
 Heritability estimates for the reproduction and produc-
tion traits were low to moderate by Bayesian approach (Table 
3) in the Tharparkar cattle. Higher heritability estimate of 
AFC indicated higher genetic variance and variability for 
AFC among other reproduction traits. Comparatively higher 
heritability for all the production traits (FLMY, FLSNFY, and 
FLFY) indicated higher genetic variance than environmental 
variance, which was desirable. Slightly higher to moderate 
heritability estimates were obtained by both the statistical 
approaches for lifetime traits in the Tharparkar cattle. 

Convergence diagnostic
Convergence diagnostics for Gibbs samplers-MCMC was 
indicated with the graphical plotting (Figures 1, 2, and 3) 
and the posterior densities (Monte Carlo Error and Geweke 
values) of estimated parameters (Table 3) in this study. 
Geweke statistics is a diagnostic tool to tackle convergence 
problems by knowing the effective sample size and to de-
termine when it is safe to stop sampling. Likewise, after 
performing lots of iterative trails the final genetic parameters 
had very low Geweke’s diagnostic values (Table 3). Equality 
testing of two equal means at first 10% and last 50% part in 
Markov chain indicates that the samples are drawn from 
the stationary distribution of the chain [40]. This is useful 

in comparing within-chain and between-chain variances 
analogous to a classical analysis of variance.

Comparative heritability estimates
Different heritability estimates can be explained by flexibility 
and cross validation using graphs in the Bayesian approach; 
however, no such freedom/tool is available in the LSML ap-
proach. Interaction of traits is an important factor in the 
multi-trait analysis. Moderate to high heritability estimate in 
a narrow range by multi trait analysis explain direct or indirect 
influence for considered traits. In general, correlation or re-
gression estimate is more precise if the relatives have close 
relationship and less precise with small sample size [12]. 
 The Monte Carlo error is the error in parameter estima-
tion with defined number of samples used from the Gibbs 
chain and is inversely proportional to the length of the Gibbs 
chain [23]. These indicate sufficient numbers of effective 
Gibbs samples to give reliable estimates. Comparative herita-
bility estimates through the LSML and Bayesian techniques 
(Table 4) also indicated accuracy and precision with the later 
by giving estimates with low error i.e. MCE (Tables 3 and 6), 
even with a small sample size in comparison to the LSML 
approach (Tables 4 and 5). The SE was comparatively higher 
in the LSML approach ranging between 0.441-0.731, while 
lower SE was obtained ranging between 0.006-0.034 in the 
multi-trait Bayesian analysis (Table 4). A significantly reduced 
error can be explained by the normalization of skewed and 
biased estimates in Bayesian approach for all considered traits 
in Tharparkar cattle. 
 Heritability of AFC estimated as 0.52±0.07 was found in 
close agreement with a previous study, while for FSP (h2 = 
0.12±0.17) it did not agree in the Tharparkar cattle [38]. 
Similar moderate heritability estimates for first lactation 
traits were observed by Choudhary et al [38] and Taneja et 
al [41] in Tharparkar cattle. Heritability estimates of LTMY, 
PL and HL was previously reported as 0.50±0.39, 0.73±0.32, 
and 0.80±0.44, respectively [38], which was higher com-
pared to the present mean posterior estimates, while the SE 
of these estimates was also higher from MCE. Estimates of 
(co)variances for all the traits in this study could be used in 
future as prior values along with the temporal data distribu-
tion to estimate more accurate and precise posterior values, 
respectively.

Genetic and phenotypic correlations
The moderate genetic correlation of AFC and FSP indicated 
more influence at genetic level as compared to the environ-
mental factors, as the higher values (in days) of both these 
reproduction traits are undesirable for economic production 
of any herd. Indirect selection was preferable from AFC in 
dairy cattle for linear type traits [42,43]. The reproductive 
traits are economically very important as the AFC and SP 
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have reasonable correlation with various conformation, fer-
tility, and lifetime traits of dairy animals [44-46]. For long 
term selection purpose multi-trait analysis are more useful 
through the early and indirect selection of all the correlated 
traits (Tables 5 and 6). 
 Genetic and phenotypic correlations between various traits 
estimated through the LSML approach in the Tharparkar 
cattle didn’t show any definite patterns (Table 5). Negative 
genetic and phenotypic correlation was noticed for the AFC-
FLMY, AFC-FLFY, AFC-FLSNFY, AFC-LTMY, FSP-LTMY, 
FSP-PL, LTMY-FLSNFY, PL-FSP, PL-FLMY, PL-FLFY and 
PL-FLSNFY, while these correlations were positive for the 
remaining traits in the present study. Most of these correla-
tions were inconsistent with the production potential of 
herd, viz. negative correlation of PL with milk composition 
traits. Therefore, MTGSAM approach was utilized for more 
efficient and reliable estimation of various genetic and phe-
notypic correlations among these traits in the Tharparkar 
cattle (Table 6). 
 Our result indicated that the LTMY did not converge to 
the desired distribution in the multi-trait Bayesian analysis 
due to its very higher variability. High variability of the 
LTMY trait was not suitable for the normalization and to 
achieve positive definite matrix with considered economic 
traits for parameter estimation. First lactation production 
status reflected PL in the Tharparkar cattle to some extent; 
however, the effect of other factors and their interaction effects 
could also play significant role in the subsequent lactations 
in different parities. This indicated that the combined study 
of first lactation traits with the lifetime traits were required 
to define the genetic potential of the Tharparkar herd. Indi-
rect selection could result in the improvement of these traits 
based on the correlation components. Our result revealed 
little scope of improvement in the lifetime traits due to their 
low phenotypic and genetic correlations (FLMY-PL/HL, FLFY-
PL/HL, and FLSNFY-PL/HL); high to moderate scope of 
improvement of production with the reproduction traits due 
to medium correlations among these traits (FLMY-AFC/FSP, 
FLFY-AFC/FSP, and FLSNFY- AFC/FSP); while higher 
scope genetic improvement in the production and lifetime 
traits due to high and positive genetic and phenotypic corre-
lations among these traits (FLMY-FLSNFY, FLMY-FLFY 
and FLFY-FLSNFY, PL-HL). Our study also revealed high 
correlations for FLFY and FLSNFY by trivariate analysis, in-
dicating short term improvement by indirect selection, as 
these traits appeared simultaneously in animal’s life span and 
affected by common non-genetic and genetic factors. Better 
opportunity for improvement can be obtained by indirect 
selection with the PL and HL as genetic and phenotypic cor-
relations were higher. 
 All the reproduction, production and the lifetime traits 
were positively correlated, except the AFC and FSP which 

were negatively correlated with the PL and HL which was 
favourable. AFC and FSP were found as most promising 
traits for the indirect selection with a long-term goal based 
on their favourable genetic and phenotypic correlations in 
the Tharparkar cattle. High genetic improvement could be 
expected from the indirect selection of these traits in the on-
going breeding program for Tharparkar herd. The negative 
genetic correlations indicated that the lower estimates of the 
AFC and FSP were in the desirable directions for the eco-
nomic benefit of the herd by ensuring higher PL and HL. 
Our results pointed towards the scope for long term improve-
ment in the production and lifetime traits based on indirect 
selection of the AFC due to their favourable genetic and 
phenotypic correlations in the Tharparkar cattle. 

Effectiveness of sire evaluation
The Tharparkar sires were evaluated based on the EBVs gen-
erated by both the approaches, using the rank correlation 
which was intended for calculating the t-values (Table 7). 
These calculated t-values were used for comparison with 
tabulated t-values at 5% and 1% level of significance at ap-
propriate degrees of freedom. The ranking of most of the 
sires was the same for the highest breeding value based on 
the first lactation traits in the Tharparkar cattle. However, 
overall ranking for all the sires were not the the same by 
both methods. Under these circumstances, it was necessary 
to compare the ranking of sires. Due to this difference in 
ranking of sires, the significance of rank correlation was 
judged by t-test. Non-significant difference was noticed in 
ranking of the sires by these methods due to a smaller num-
ber of sires with this sampling structure (Table 7).

CONCLUSION

The goals of decision-making in subsidized farms are to lower 
the costs of rearing and save time, which can be achieved by 
an accurate and precise estimate of genetic parameters with 
a simple analytic process. Considering such objectives, the 
results of the present study were important to increase prof-
itability and genetic potential in dairy cattle reproduction, 
and ultimately lifetime productivity. Distributions provid-
ed by the Bayesian analysis have great flexibility in cross 
checking, visualization, and automation of statistical analyses 
from marginal posterior distributions which was not possible 
with the conventional methods of analysis. BLUPF90 is a 
user-friendly tool to compute efficient solutions for genetic 
parameters even with a small dataset. The moderate to higher 
value of heritability estimate for the considered traits indi-
cated sufficient genetic base for efficient selection in the 
Tharparkar cattle. Selection of productive animals based 
on milk constituents (FLFY and FLSNFY) is recommended 
for indirect selection with short-term goals in Tharparkar. 
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Correlations studies enhance the scope of indirect selection 
at an early age by AFC and FSP for production potential in 
long-term breeding programs of the Tharparkar herd. Our 
results revealed that the AFC had a favourable negative ge-
netic correlation with the production and lifetime traits, 
which indicated that the AFC will be an important trait for 
indirect selection of these production traits, since a reduc-
tion in AFC will be beneficial for improving first lactation 
and lifetime traits in the Tharparkar cattle. Distinct ranking 
and efficient evaluation of the Tharparkar sires based on 
the Bayesian approach, compared to that of the frequentist 
LSML technique, suggested the multi-trait Bayesian analysis 
to be the method of choice for the reliable genetic assess-
ment of the Tharparkar cattle. 
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