Go to Top Go to Bottom
Review Paper
Asian-Australasian Journal of Animal Sciences 2010;23(5): 672-679.
https://doi.org/10.5713/ajas.2010.90637    Published online April 22, 2010.
Therapy of Diabetes Mellitus Using Experimental Animal Models
T. S. Min, S. H. Park
Abstract
Diabetes mellitus is a worldwide epidemic with high mortality. As concern over this disease rises, the number and value of research grants awarded by the National Research Foundation of Korea (NRF) have increased. Diabetes mellitus is classified into two groups. Type 1 diabetes requires insulin treatment, whereas type 2 diabetes, which is characterized by insulin resistance, can be treated using a variety of therapeutic approaches. Hyperglycemia is thought to be a primary factor in the onset of diabetes, although hyperlipidemia also plays a role. The major organs active in the regulation of blood glucose are the pancreas, liver, skeletal muscle, adipose tissue, intestine, and kidney. Diabetic complications are generally classified as macrovascular (e.g., stroke and heart disease) or microvascular (i.e., diabetic neuropathy, nephropathy, and retinopathy). Several animal models of diabetes have been used to develop oral therapeutic agents, including sulfonylureas, biguanides, thiazolidinediones, acarbose, and miglitol, for both type 1 and type 2 diseases. This review provides an overview of diabetes mellitus, describes oral therapeutic agents for diabetes and their targets, and discusses new developments in diabetic drug research.
Keywords: Diabetes; Diabetic Complications; Experimental Animal Models; Therapeutic Agents
TOOLS
METRICS Graph View
  • 1 Crossref
  •  0 Scopus
  • 3,609 View
  • 49 Download
Related articles


Editorial Office
Asian-Australasian Association of Animal Production Societies(AAAP)
Room 708 Sammo Sporex, 23, Sillim-ro 59-gil, Gwanak-gu, Seoul 08776, Korea   
TEL : +82-2-888-6558    FAX : +82-2-888-6559   
E-mail : editor@animbiosci.org               

Copyright © 2024 by Asian-Australasian Association of Animal Production Societies.

Developed in M2PI

Close layer
prev next